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Introduction
The Southwest encompasses diverse natural ecosystems, vibrant cultures, and productive economies. 
This vast region spans nearly 700,000 square miles, or 18% of the US land area.1 The Southwest is home to 
more than 60 million people and is among the fastest growing and most economically productive areas of 
the country. Southwest ecosystems provide society with food, energy, and water; regulate climate; protect 
against disasters and disturbances; and offer the settings and inspiration for meaningful social, cultural, 
recreational, and spiritual experiences (Figure 8.17).

Climate change is negatively impacting human health and well-being (KM 15.1), cultural heritage, property, 
built infrastructure, economic prosperity, natural capital, and ecosystem services across the Southwest 
(Figure 28.1). Impacts include rising air temperatures2 and sea surface temperatures, both attribut-
able in part to human activities;3 changes to the timing, form, and amount of precipitation;4,5,6 sea level 
rise and associated flooding events;7 increases in extreme heat events;8 summertime heat stress9,10 and 
heat-related mortality;11 surface and groundwater reductions;12,13,14,15,16 increased wildfire risks;17,18,19,20,21 
and changes to ocean chemistry. These impacts pose heightened risks to overburdened and frontline 
communities and to Indigenous Peoples (KMs 4.2, 15.2, 16.1).
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Climate Change Indicators, Impacts, and Responses in the Southwest

Indicators highlight important climate impacts and adaptation and mitigation efforts.

Figure 28.1. Indicators track the impacts of climate change on the atmosphere; ice, snow, and water; ocean and 
coast; and land and ecosystems, as well as adaptation and mitigation efforts. Monitoring these indicators helps 
us understand how impacts are experienced and how to adapt to risks. See Appendix 4 for more Indicators. Fig-
ure credit: Arizona State University. See figure metadata for additional contributors. 

Southwest ecosystems transition from deserts and grasslands in hotter and lower elevations to forests and 
alpine meadows in cooler, higher elevations. The region supports important terrestrial and marine biodiver-
sity and ecosystems, including the Sonoran Desert, the Sierra Nevada, and the Pacific Coast. The southern 
deserts commonly see temperatures between 105° and 115°F, and Phoenix has the hottest climate of all major 
US cities. The California coast stretches 3,400 miles (5,500 km), and its coastal wetlands provide critical 
habitat for fish and wildlife, protect water quality, and buffer against storms and floods.
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The region is heavily urbanized, with 9 out of 10 people living in cities such as Albuquerque, Denver, 
Las Vegas, Los Angeles, Phoenix, Salt Lake City, and San Francisco. The region is also a major hub for 
software innovation, information technology, and semiconductor manufacturing. California’s economy 
alone contributed more than $3.21 trillion (in 2022 dollars) to the US GDP in 2021, about 12% of the total 
US economy.22 The region also encompasses expansive rural areas with livelihoods centered on ranching, 
mining, agriculture, and tourism.

Indigenous Peoples and Tribal lands are essential to the social, cultural, and geographic identity of the 
region. The Southwest is home to 182 Federally Recognized Tribes,23 as well as numerous state-recognized 
Tribes and Tribes seeking state or federal recognition. California has the largest number of Federally 
Recognized Tribes (109) and the largest Indigenous population of any state.23 Arizona, New Mexico, 
Colorado, and Utah are home to seven of the most populous Tribes, ranging from 10,000 to more than 
300,000 members. Nine Tribes in the Southwest are considered “large land-holding Tribes,” five of which 
are among the ten largest reservations in the US, ranging in size from 600,000 to 16 million acres. The 
largest US federal Indian reservation—the 16-million-acre Navajo Nation Reservation—occupies portions of 
Arizona, New Mexico, and Utah.

The Federal Government manages nearly half of the total land area of the region through national 
parks, forests, fish and wildlife reserves, military installations, and public lands.24 In Nevada, the Federal 
Government is responsible for managing more than 80% of the total acreage of the state.24 Thus, the Federal 
Government is central to adaptation and mitigation in the Southwest.

Over the past five years, climate change impacts in the Southwest have become increasingly apparent and 
widespread.25 At the same time, understanding and modeling of how these impacts affect specific sectors 
and processes have improved. For instance, advances have been made in understanding and modeling of 
water,26,27,28 food and agriculture,29 wildfire,19 invasive species, biodiversity loss (KM 8.2), ecosystem trans-
formations, human health,30 and human migration across the Southwest.31,32 Furthermore, research has 
advanced understanding and modeling of interdependencies, feedbacks, and cascading risks for intercon-
nected systems (KM 18.1) such as the food–energy–water nexus (KM 18.3).33,34

To address these climate change impacts, governments, nongovernmental organizations, and private 
enterprises are increasingly responding with planning and actions to reduce current and future risks 
and increase adaptive capacity. Adaptation efforts that are effective, feasible, and just—including nature-
based solutions such as green infrastructure for flood mitigation—have been shown to reduce climate 
risk, increase resilience, and provide co-benefits to related societal goals (KM 8.3).35 There is an awareness 
of new approaches to equity and environmental justice for frontline communities, as well as Indigenous 
Peoples (KM 16.2) across the Southwest. These approaches recognize, protect, and apply diverse knowledge 
systems, including Indigenous Knowledges (KM 16.3). Social science has also improved our understanding of 
inclusive, participatory, and collaborative decision-making to solve problems in this region and beyond.36,37,38

While this chapter focuses on climate impacts, risks, and adaptation actions in the Southwest, it also 
recognizes efforts underway to mitigate greenhouse gas emissions (Figure 32.20) throughout the region at 
multiple scales. California, Colorado, and New Mexico are members of the US Climate Alliance, committed 
to reducing net greenhouse gas (GHG) emissions in line with the Paris Agreement (KM 32.5). California has 
committed to carbon neutrality by 204539,40 and released a detailed plan with targets to achieve this goal,41 
as well as augmenting funding across sectors.42 Both Colorado and New Mexico have statewide greenhouse 
gas reduction goals.43,44 At the local level, dozens of cities in all Southwest states are committed to emissions 
reductions in line with the Paris Agreement through the bipartisan Climate Mayors network (KM 32.5). For 
example, the Phoenix Climate Action Plan states that the city is on track to meet its goal of 50% reduction in 
GHG emissions (below its 2018 baseline) by 2030 and is committed to carbon neutrality by 2050.



Fifth National Climate Assessment

28-9 | Southwest

Key Message 28.1  
Drought and Increasing Aridity Threaten Water Resources

Climate change has reduced surface water and groundwater availability for people and nature 
in the Southwest (very high confidence), and there are inequities in how these impacts are 
experienced (high confidence). Higher temperatures have intensified drought and will lead to 
a more arid future (very likely, high confidence); without adaptation, these changes will exac-
erbate existing water supply–demand imbalances (likely, high confidence). At the same time, 
the region is experiencing more intense precipitation events, including atmospheric rivers, 
which contribute to increased flooding (high confidence). Flexible and adaptive approaches to 
water management have the potential to mitigate the impacts of these changes on people, the 
environment, and the economy (medium confidence).

Drought and Aridification
The Southwest region is historically arid and marked by episodes of intense drought and precipitation (KM 
4.1).45,46 Climate change is exacerbating these conditions, as increasing temperatures are leading to hotter 
extreme heat events, drier soils, greater atmospheric evaporative demand, and reduced flows in major river 
basins such as the Colorado and Rio Grande.14,47,48,49,50 For example, between 1913 and 2017, annual average 
discharge from the Colorado River decreased by 9.3% for each degree Celsius of warming (Box 28.1).49 Addi-
tionally, since 2000 the Southwest has experienced an exceptional “megadrought”—defined as an episode 
of intense aridity that persists for multiple decades—that is recognized as the driest 22-year period in 
1,200 years.51

Mountain snowpack is one of the most important sources of water in the Southwest, serving as a natural 
reservoir to supply water to drier, lower elevations for irrigated agricultural, municipal and industrial uses, 
and ecosystems (KM 4.1). Observed declines in western snowpack over the last century have been pre-
dominantly driven by warming trends,4 leading to smaller snowpack volumes, higher-elevation snow lines, 
and earlier snowmelt (KM 3.4).6,52 These processes are exacerbated by the deposition of dust and other 
light-absorbing particles on snowpack, which accelerates snowmelt.53 The resulting decrease in snow cover 
also reduces the albedo, or reflectivity, of the land surface, resulting in a positive feedback cycle that further 
increases solar radiation absorption, warming, and snowmelt.49,54,55 These changing snowpack dynamics are 
expected to have different influences on the timing and volume of snowmelt-driven streamflow in different 
basins,56 potentially disrupting the ability of existing water infrastructure, including hydropower, to meet 
the region’s needs5,49 and altering ecosystem dynamics. Persistent low-snow years are projected to occur in 
the next half century if climate change continues unabated (Figure 28.2).5
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Projected Changes in Soil Moisture, Snow Water Equivalent, and Runoff

 
Climate change is projected to reduce snow water equivalent and alter trends in soil moisture and annual runoff.

Figure 28.2. These maps show projected average mid-21st-century (2036–2065; top row) and late-21st-century 
(2070–2099; bottom row) differences in annual soil moisture, snow water equivalent (the amount of water con-
tained within the snowpack), and runoff over the Southwest region relative to the baseline period, 1991–2020. 
The data in these maps come from a land-surface hydrological model that simulates different parts of the water 
and energy balance. The model takes temperature and precipitation data from an ensemble of downscaled 
Coupled Model Intercomparison Project, Phase 5 (CMIP5) global climate models using an intermediate scenario 
(RCP4.5)57 to create future projections of soil moisture, snow water equivalent, and runoff.58 Warming tempera-
tures and precipitation variability are expected to reduce snow water equivalent and alter trends in soil moisture 
and annual runoff (KM 4.1). The historical record shows that the climatology of 1991–2020 was substantially 
warmer than the climatology of preceding 30-year periods. Thus, the areas of projected lower soil moisture, 
snow water equivalent, and runoff in this figure, especially at higher elevations, present marked deficits in 
comparison to 30-year periods in the 20th century. There are also areas of projected increases in soil moisture 
and runoff. Some CMIP5 global climate models project increased precipitation over parts of the Southwest, and 
when these are included in calculating average soil moisture or runoff, the result indicates wetter conditions in 
some locations, predominantly in Nevada, Utah, southwest Arizona, and southeast California. For more detail on 
variability, Figures 4.5, 4.6, and 4.7 show data from the same source that illustrate the wet to dry range of projec-
tions for the mid-21st century. Figure credit: New Mexico State University; Arizona State University; University of 
Nevada, Reno; NOAA NCEI; and CISESS NC.

In addition to extended periods of record-low precipitation, higher temperatures driven by climate change 
have increased evapotranspiration and reduced soil moisture, which can reduce the volume of runoff 
produced from a given amount of precipitation.16,47,50,59 These trends have negatively impacted natural 
resource management and agricultural production (KM 11.1) by increasing stress on vegetation.60 Coupled 
with increases in demand and subsequent water withdrawals, reduced streamflow has caused many 
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of the region’s lakes and reservoirs, such as the Great Salt Lake, to reach historically low water levels.61 
Furthermore, greater variability in streamflow threatens the region’s ability to consistently produce and use 
hydropower, impacting a typically reliable and low-carbon source of energy.62

Climate warming will also reduce groundwater recharge from rainfall, snowmelt, and runoff in some areas, 
thereby reducing groundwater storage.63,64 These effects are exacerbated by groundwater pumping to satisfy 
the needs of agricultural irrigation,65,66 which is the biggest consumer of fresh water in the region. The 
Central Valley aquifer of California is one of the most stressed aquifers in the world; during the 2012–2016 
drought, about two-thirds of the valley’s surface water deficit was due to groundwater pumping, which 
caused land subsidence (the gradual sinking of land) in some areas67 and declines in groundwater quality.

Flooding
Despite the region’s increasing aridity, flooding from extreme precipitation events (KM 3.5) and snowmelt 
conditions (KM 4.1) also poses a threat to life and property, as well as to freshwater ecosystems.68,69 Due to 
climate change, snowmelt-driven flooding is expected to occur earlier in the year due to earlier runoff.70 
Moreover, atmospheric rivers, which have driven much of historical flooding in the region, are expected to 
intensify under a warming climate.71,72 Flooding from sea level rise may also threaten water infrastructure 
and supplies in areas such as the Sacramento–San Joaquin Bay Delta region.73,74

Disproportionate Impacts
Critically, the impacts of these climate-driven changes are experienced disproportionately by certain 
communities in the region, including Indigenous communities (KM 16.1). A lack of clean water and sanitation 
services in Indigenous communities came to national light in 2020 due to COVID-19, which spread 3.5 times 
faster among Indigenous than non-Indigenous communities in the initial stage of the pandemic,75 due in 
part to the lack of access to potable water in some Indigenous communities. A major impediment to water 
access is the cost of water infrastructure, which averages $600 per acre-foot of water for non-Indigenous 
families with piped delivery, compared to $43,000 per acre-foot of water for Navajo families relying on 
hauled water (no dollar year available).76,77 Furthermore, many Tribes in the region continue to lack access to 
water because their water rights have not been adjudicated through settlements or other processes, which 
could further exacerbate water shortages for other users.78

Other examples of overburdened communities experiencing disproportionate water-related impacts of 
climate change include certain Black communities, which face disproportionately higher flood risk in Los 
Angeles,79 and Hispanic and low-wealth communities, which receive lower-quality drinking water80 and may 
be systematically excluded from water management processes (KM 4.3).81

Adaptation Pathways
In response to these interrelated climate challenges, people across the Southwest have implemented 
adaptive water governance and management approaches. Examples include California’s Sustainable 
Groundwater Management Act82 and various conservation and drought response measures in the Colorado 
River basin,37,38,83 which incentivize collaboration among diverse participants to develop innovative 
solutions (KM 12.4). Transitions toward more sustainable water management under climate change also 
include innovative infrastructure (e.g., enhanced aquifer storage, recharge, and recovery) and institutional 
practices (e.g., integrative land and water management practices, changes in rate structures, water sharing 
agreements, and reservoir operations).84,85,86,87 Social science studies in Southwest cities such as Denver, 
Phoenix, and Las Vegas indicate widespread support for innovative management strategies for urban water 
sustainability88 and opportunities for targeted educational interventions for demand management strategies 
based on residents’ attitudes toward climate change.89 The extent to which these adaptation actions 
mitigate changes in water availability depends on interacting climate and social dynamics (KM 3.4).
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Box 28.1. First Water Shortage Declaration on the Colorado River

In response to more than 22 years of historic drought exacerbated by climate change and a growing imbalance between 
water supply and demand in the Southwest, the US Bureau of Reclamation declared the first-ever water shortage on the 
Colorado River in August 2021 (Figure 4.18).90 The decision came after the agency projected that the water level in Lake 
Mead, the Nation’s largest reservoir, would fall to 1,066 feet above sea level, or just 36% of capacity, by the end of 2021, 
the lowest level since the reservoir was initially filled in the 1930s (Figure 28.3). In addition to impacting water supply reli-
ability for all users, low reservoir levels could disrupt hydropower generation, which provides electricity to several commu-
nities in the region. The initial round of water supply cuts implemented under the declaration, following previously negoti-
ated policies, affected Arizona, Nevada, and Mexico, with Arizona farmers taking the biggest cuts. Since then, deeper and 
more widespread cuts, as well as calls for additional conservation measures, have been made and are expected to expand 
as climate change impacts continue. In response, the federal governments of the United States and Mexico, the seven 
US Colorado River basin states, and Indigenous Peoples are developing a range of adaptation pathways and solutions to 
enhance long-standing collaboration on the Colorado River (KM 16.3), including modeling the impact of more extreme 
climate change scenarios on water resources in the basin. Multisector conservation and demand management is seen by 
many as a major solution. Farms can reduce agricultural consumption by increasing water-use efficiency using technol-
ogies such as drip irrigation and alternative crop choice. Urban and industrial water conservation, recycling, and reuse 
improvements could support “water-smart” and economically productive industries in the Southwest. Through a partner-
ship with Mexico on coastal water desalination, the region could free up Colorado River water for the United States while 
providing Mexico with a secure new supply.91 Desalination proposals, however, have raised concerns about carbon-inten-
sive energy demands, cost, brine management, and inequitable impacts on Mexico, including environmental impacts from 
brine disposal. Innovative, decentralized water treatment facilities could directly benefit communities in both countries, 
including those on Tribal lands. 

Satellite Images of Lake Mead

Lake Mead water levels have declined, with potential water supply implications for millions of people.

Figure 28.3. Lake Mead, the largest reservoir in the US, supplies water to tens of millions of people across the 
Southwest; irrigates millions of acres of agricultural land; supports biodiversity, cultural heritage, ecosystems, 
and ecosystem services; and provides recreational opportunities. From 2000 (a) to 2022 (b), the water levels 
in Lake Mead declined from 98% to just 27% of its capacity, as shown in these satellite images. Satellite 
images: NASA Earth Observatory.
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Key Message 28.2  
Adaptation Efforts Increase to Address 
Accelerating Impacts to the Region’s Coast and Ocean

Large-scale marine heatwaves and harmful algal blooms have caused profound and cascading 
impacts on marine coastal ecosystems and economies (high confidence). Without implemen-
tation of adaptation or emissions-reductions measures, human-caused warming will drive 
more frequent and longer marine heatwaves (very likely, very high confidence), amplifying 
negative coastal effects (medium confidence). Sea level rise, along with associated impacts 
such as flooding and saltwater intrusion, will have severe and disproportionate effects on 
infrastructure, communities, and natural resources (likely, very high confidence). The California 
State Government has applied climate science to planning and decision-making for sea level 
rise, and multiple regions are moving toward climate-informed and adaptive strategies for 
fisheries (high confidence). However, climate planning and adaptation solutions for aqua-
culture are less clear (high confidence).

The coastal region of the Southwest encompasses approximately 3,400 miles of coastline and nearly 70% 
of the state’s 39.4 million people. California’s 19 coastal counties employ more than 12 million people92 and 
in 2012 accounted for 80% of the state’s GDP ($57.25 billion in 2022 dollars).93 Furthermore, California is 
showing leadership through adaptation actions nationally.

Ocean Extremes and Adaptation
California coastal sea surface temperature has increased an average of 0.4°–0.6°F per decade since the 
1970s94 and is projected to increase into the future under climate change (Ch. 2).95,96 Human-caused warming 
also contributes to marine heatwaves (MHWs; Figure 28.4), or incidences of exceptionally warm ocean 
temperatures, which have already had significant impacts on human and natural systems (Box 10.1).97,98,99,100 
The change in average cumulative intensification of MHWs for the entire US coast is presented in Figure 
A4.11. As the ocean warms, including in California coastal waters, MHWs increasingly exceed thermal limits 
of ecosystems, amplifying impacts99 including shifts in marine species composition,101 lower abundance and 
nutritional quality of important small prey fishes,102,103 and a potential influence on mass seabird mortalities 
and reproduction.104,105 Similarly, Tribal/Indigenous Traditional Knowledge demonstrates significant 
declines in five coastal species of cultural significance for the Tolowa Dee-ni’ Nation, the Cher-Ae Heights 
Indian Community of the Trinidad Rancheria, the Wiyot Tribe, and the InterTribal Sinkyone Wilderness 
Council, a Tribal consortium of ten Tribal Nations.106 Such ecological changes disproportionately impact 
coastal communities and economies (KM 9.3),107,108,109 including cultural resources for Indigenous Peoples 
(KM 15.2).106,110 The 2014–2016 Northeast Pacific marine heatwave was followed by others in 2018111and 2019–
2020.112 These MHWs can coincide with and contribute to other climate-related extremes such as drought100 
and harmful algal blooms (HABs).113
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California Marine Heatwaves

Pacific marine heatwaves have had coast-wide impacts on ecosystems and fisheries. 

Figure 28.4. The 2014–2016 Pacific marine heatwave (MHW) was unusually long and resulted in a variety of 
impacts for the southwest California coast (a). This MHW was followed by less extensive events in 2018 and 
2019–2020 (b). While impacts like this can be expected to continue, they demonstrate the need and potential for 
adaptive management and mitigation through an integrated ecosystem approach to managing marine habitats 
and fisheries. EEZ refers to exclusive economic zone. Figure credit: University of California, Santa Barbara; Califor-
nia Department of Transportation; NOAA NCEI; and CISESS NC.

Commercial and recreational wild fisheries, as well as aquaculture (aquatic farming), will continue to be 
negatively affected by MHWs and HABs,107 resulting in severe economic ramifications.113,114,115,116 Extreme ocean 
warming events also have compound effects: an MHW contributed to the loss of more than 90% of Northern 
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California’s bull kelp, a foundational species for the ocean ecosystem, resulting in large economic losses in 
fisheries (Focus on Blue Carbon),117,118 including the red abalone, a species now listed as critically endangered 
by the International Union for Conservation of Nature. Further, extreme event–related delays and closures 
disproportionately impacted smaller-scale fishing operations.119

The widespread impacts of MHWs and HABs underscore the need for effective adaptive approaches to 
fisheries management. While fishers in California are coping with MHWs by fishing in different areas or 
for different species,108 it will be challenging to manage fisheries in the long term under extreme warming 
events.115 Marine protected areas (MPAs), which are considered a management strategy for climate-driven 
ocean changes, may not buffer widespread effects of MHWs on species in southern California kelp forests.120 
Adopting an ecosystem approach that considers multiple management options instead of one species in 
isolation121,122 appears to improve management under climate change.123 Applying a more coordinated disaster 
risk management approach to MHWs and extreme HAB events appears to correspond to better adaptive 
fisheries management, emphasizing the need for improving coordination and consistency across governing 
bodies, communities, and fishers on the frontlines (KM 10.3).124,125

Human-caused ocean warming coincides with increasing ocean acidification (OA) and declining oxygen 
levels (hypoxia) of the deeper, more nutrient-rich upwelled coastal waters. Under a very high scenario 
(RCP8.5), sardines, a commercially and ecologically important species, are predicted to move poleward, 
resulting in substantial shifts in catch.109,126 Under the same scenario, increased acidity due to the ocean’s 
chemical response to absorption of carbon dioxide is projected to increase the mortality of calcifying inver-
tebrates (such as oysters and other bivalves), which are important to aquaculture and the food web, and 
result in a loss of food sources for some fishes and invertebrates.127

Potential adaptation solutions include an ecosystem management approach to marine habitats and fisheries, 
as well as enforcing water and land-use regulations, which are expected to buffer some climate impacts.128 
Protection and restoration of foundational eelgrass and kelp forests in California waters provides essential 
habitat, and these ecosystems can also improve local pH and oxygen conditions.129,130 The Fishery Ecosystem 
Plan adopted by Pacific Fishery Management Council in 2013 includes guidance on OA and hypoxia,128 
but additional strategies—such as flexible permitting, better coordination with fishing communities, and 
adaptable control rules—may be needed to improve outcomes.131 Nature-based aquaculture solutions, such 
as conservation and restorative aquaculture, also have potential to mitigate local OA impacts132,133,134,135 but are 
just emerging in California.136

Sea Level Rise Impacts and Adaptation Planning
Sea level rise (SLR) poses risks to the California coast through an increase in flooding, impacts from 
storm surges, and loss of coastal habitats and beaches (Figure 28.5; KM 9.1). Seas are projected to rise, on 
average, 0.79–1.25 feet for the California coastline by 2050, 3.10–6.63 feet by 2100, and 6.11–11.90 feet by 
2150 (Intermediate to High scenario).7 California has more people living below 3.3 feet (1 m) of elevation 
than any other state except Louisiana;137 the population living in the mapped 100- and 500-year coastal 
floodplains increased approximately 10% from 2010 to 2020.137 SLR is also expected to exacerbate inequities 
in communities and result in compounding impacts, such as saltwater intrusion polluting groundwater.7,138,

139,140,141,142,143 Furthermore, coastal Tribes in California are observing rising sea levels, which, when combined 
with the loss of kelp forests, are increasing the risk of coastal erosion, destruction of cultural artifacts, and 
limited access to traditional shoreline sites.110 

By 2050, for all emissions pathways, SLR effects on tide and storm surge are expected to cause more 
frequent moderate to major high tide flood events, and coastal communities are already experiencing minor 
to moderate high tide flooding (KM 9.1).7
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Sea Level Rise Risks to Infrastructure and Communities

Flooding from sea level rise is expected to affect transportation infrastructure and communities along the Cali-
fornia coast, with disproportionate impacts on lower-income communities.

Figure 28.5. These maps show the projected flood risk from 3 feet of sea level rise (SLR), as well as risks to criti-
cal infrastructure and surrounding communities, for the San Francisco Bay Area (top row) and the coastline from 
Los Angeles to San Diego (bottom row). Panels in the left column show transportation infrastructure threatened 
by flooding with 3 feet of SLR, while those in the right column show the number of hazardous facilities (indicated 
by circles) and census tracts at risk of flooding, with purple shading indicating the fraction of population in each 
census tract with income below the poverty level. Flooding from SLR will impact major transportation infrastruc-
ture along the coast; given the locations of hazardous facilities and their overlap with lower-income communities, 
this flooding will have disproportionate impacts on these communities. Flood risk from SLR is consistent with 
an Intermediate scenario in the year 2100.7 Transportation infrastructure includes major airports, highways, and 
railways. Hazardous facility categories defined by EPA include manufacturing plants, power transmission plants 
and substations, natural gas pipelines, refineries and oil and gas wells, waste management facilities, landfills and 
incinerators, and animal operations. Figure credit: Eagle Rock Analytics.
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Coastal energy and transportation infrastructure is expected to be negatively impacted by flooding from 
SLR. The projected inundation of energy substations in low-lying areas during storm events and from 
extreme SLR under a very high scenario (RCP8.5) is expected to cause electricity service interruptions to 
thousands of customers and increase maintenance and repair costs.139 Analysis of California’s transporta-
tion fuel network found that docks, terminals, and refineries are most exposed to coastal flooding.143 The 
California Department of Transportation has begun adaptation planning efforts that consider a variety 
of strategies beyond hardening infrastructure, including nature-based strategies to limit the impacts of 
flooding (KM 8.3), as well as planning to avoid loss of coastal resources and access.144

Sea level rise and increased coastal flooding will disproportionately impact frontline communities (KM 
9.2).145 The Toxic Tides project found that under a very high scenario (RCP8.5), SLR in California146,147 would 
result in increased flooding to over 400 industrial facilities and contaminated sites, including power 
plants, refineries, and hazardous waste sites, with 440 projected to be at risk of at least one flood event 
per year by 2100.148 Any flooding of hazardous sites would increase risks of contamination in surrounding 
frontline communities.149

Residents of affordable housing, typically low-income communities, are especially vulnerable to SLR, with 
a greater percentage of affordable housing exposed to SLR than the general housing stock in some coastal 
states.140 California is in the top four states nationwide with the most units of affordable housing exposed 
at least four times per year to coastal flooding based on projected sea levels for the year 2050 under a very 
high scenario (RCP8.5).140 By 2050, California is also projected to see a 40% increase in the number of units 
at risk of flooding, compared to 2000.140 For affordable housing residents, flood risk is compounded by the 
threat of displacement due to rising property values and rents. Strategic city-level adaptation and resilience 
efforts, combined with community and infrastructure improvements, could protect these residents from 
potential displacement.140,150

Higher seas are raising the coastal groundwater table, exposing communities to flooding from water that 
emerges from underground (KMs 9.1, 9.2).138,141 Communities in low-lying areas such as San Francisco Bay 
are most at risk, and areas with shallow coastal water tables are projected to see widespread flooding 
from groundwater emergence.138,141 Subsidence exacerbates this threat; coastal residents residing in 
subsiding locations experience an average relative sea level rise of up to four times faster than the global 
rate.142,151 These risks have not been well addressed in adaptation planning. Furthermore, the impacts and 
adaptation needs are expected to be higher than reported if only overland flooding due to SLR—which 
does not include flooding from subsidence or groundwater intrusion—is considered in community and 
infrastructure planning.142

Adaptation planning for SLR as a field has advanced,152 as coastal managers have reported an increased 
concern regarding the threat of SLR and local, regional, and state governments in California apply climate 
science to decision-making (KM 9.3).153 California has instituted policies requiring consideration of climate 
change in state and local government decision-making and infrastructure planning.154,155,156,157 Specifically for 
the coast, there is guidance on how to apply SLR risk assessment and projections into planning, including 
specific guidance for critical infrastructure.158,159 This landscape of statewide policy and guidance is directly 
informing local coastal adaptation planning. Of 19 coastal counties, 18 have completed a vulnerability 
assessment, developed an adaptation policy, and/or updated the state-mandated safety elements of their 
general plans to include climate adaptation.160

While adaptation planning along the California coast has advanced significantly, many of these efforts have 
not yet been implemented.160 This is partly because of financing and implementation challenges, especially 
for local governments that lack resources and must overcome institutional and governance issues (KM 
31.5).152,161 Despite these challenges, California is ahead of many other parts of the US coast in employing 
adaptation strategies and appears to be well positioned for increased adaptation.152
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Key Message 28.3  
Increasing Challenges Confront Food and Fiber Production in the Southwest

Continuing drought and water scarcity will make it more difficult to raise food and fiber in the 
Southwest without major shifts to new strategies and technologies (high confidence). Extreme 
heat events will increase animal stress and reduce crop quality and yield, thereby resulting in 
widespread economic impacts (likely, high confidence). Because people in the Southwest have 
adapted to drought impacts for millennia, incorporating Indigenous Knowledge with techno-
logical innovation can offer solutions to protect food security and sovereignty (medium confi-
dence).

Across the Southwest, annual average minimum air temperatures, growing degree days, and average 
number of days above 86°F (the threshold used to define heat zones) are projected to increase due to 
climate change.162 By midcentury under intermediate (RCP4.5) and very high (RCP8.5) scenarios, projections 
show longer growing seasons, a northward shift in plant hardiness zones, and expanded areas of heat stress 
exposure to crops and livestock (KM 11.1).162 In California, increasing temperatures are expected to affect the 
timing of cool-season annual crops and the location of warm-season annual crops.163 Warmer winters would 
be detrimental to the chilling requirements for orchard crops.164 In California, fewer cold snaps are expected 
to reduce crop exposure to frost;165 however, “false springs” in the intermountain West are expected to 
increase vulnerability to late-season freeze events.166 During summer, a higher probability of heatwaves 
is expected (KM 2.2).167 The productivity of some economically important crops, such as upland cotton in 
Arizona, has already declined because of heat stress.168 While increased drought is the most prominent 
climate-driven risk to agriculture in the region, important farming areas such as California’s Central Valley 
also face damage from occasional large floods caused by atmospheric river events.169

Impacts to Farming
Farmers and ranchers are particularly at risk from prolonged, severe drought (Figures 28.6, 8.6). Future 
temperature increases are expected to drive higher rates of evapotranspiration, increasing demand for 
fresh water for irrigation.168 The producers most vulnerable to local precipitation deficits are dryland 
farmers growing rain-fed crops and producers raising livestock on rangelands. Community-based snow-fed 
irrigation systems in high-elevation watersheds of New Mexico and Colorado, known as acequias, are par-
ticularly exposed to the shortfalls in annual snowpack.170 Under increasing aridity, agricultural practices 
such as fallowing and grazing on rangelands will need careful management to avoid increased wind erosion 
and dust production from exposed soils.171 Rising summer temperatures also degrade protective desert 
soil crusts formed by communities of algae, bacteria, lichens, fungi, or mosses, adding to airborne dust 
loads.172 The impacts of increasing aridity on agriculture are therefore twofold because dust deposits 
on mountain snowpack drive faster melting, depleting the snowpack173 and resulting in reduced surface 
water for irrigation. While just 22 of the 216 counties in the region are classified as “farming-dependent” 
by the USDA,174 agriculture is an important contributor to state and local economies and US food supply. 
California leads the Nation in agricultural cash receipts,175 primarily from fruits, nuts, and vegetables; direct 
farm sales to consumers; and farm expenditures.176 Climate change poses risks to both productivity and 
quality of fruit and vegetable products, requiring adaptations on farms and throughout the supply chain, 
including changes in crop calendars, nutrient and pest management strategies, post-harvest handling, and 
preservation methods.177,178
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Agriculture and Climate Change in the Southwest US

 
Monitoring indicators of climate impacts on agriculture can improve understanding and help with adaptation 
efforts. 

Figure 28.6. Climate change impacts to the Southwest’s agriculture include longer growing seasons, a northward 
shift in plant hardiness zones, expanded areas of heat stress, and higher rates of evapotranspiration, increasing 
demand for fresh water for irrigation. Monitoring the indicators helps us understand how impacts are experienced 
and how to adapt to risks. Figure credit: New Mexico State University and Utah State University. See figure meta-
data for additional contributors.

Reduced crop production due to climate change will carry major economic costs. Drought events have 
brought significant economic impacts on regional agriculture (KM 19.1); for example, the 2021 drought cost 
California farming sectors an estimated $1.28 billion (in 2022 dollars) and led to the loss of 8,745 full- or 
part-time jobs (KM 11.3).179 Modeling studies indicate that warming temperatures are expected to have a 
detrimental impact on the yields of almonds,164 wine grapes,180 and other high-value crops.169 Localized 
adaptation strategies include crop- and locality-specific combinations of irrigation, site management 
(e.g., use of cover crops and increased fallowing), and cultivar selection.181 Fallowing as a response to water 
shortages can bring its own challenges, such as increased dust and weed production, but it can also enhance 
ecosystem services such as groundwater recharge and improved ecosystem health.182 

Climate warming is likely to lead to larger, more frequent, and more severe outbreaks of bark beetles, 
negatively affecting the quality and quantity of timber available to the region’s forestry and forest products 
industries.183 While wood products are minor economic contributors to the region’s inland states, costs 
could be considerable in California, where the industry has been estimated to contribute $44.8 billion (in 
2022 dollars) and 177,000 jobs (KM 7.2).184

Over time, agricultural income in the region has become more dependent on crops than livestock.185 
Because most Southwest croplands are irrigated, agriculture in the region had been thought to be less 
vulnerable to climate change than that in other parts of the country. However, future irrigation supply is 
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uncertain as it depends on dwindling ground and surface water supplies (KMs 28.1, 4.1). For example, Arizona 
allows up to 73% of its water to be used for crop production,186 but the promise of continued irrigation 
water is less clear given the state’s rapidly growing population and decreased flows in the Colorado River.187 
Crop irrigation, mainly of alfalfa, accounts for three-quarters of consumptive water use in the Great Salt 
Lake basin, where cuts to irrigation use are advocated as the state seeks to prevent total depletion of the 
lake and associated environmental and public health impacts.188 Strategies to reduce irrigation water use 
include switching from gravity flow and sprinklers to more efficient systems,186 but the costs of conversion 
can be difficult for farmers when climate change is already reducing yields.185 Federal insurance programs 
can assist farmers after climate-related crop or forage loss, providing short-term economic relief from 
effects of extreme events.189 However, some research suggests that federal insurance programs provide a 
disincentive for farmers to adapt to climate change impacts.189 Non-climate-related stressors can influence 
the capacity of agricultural communities to adapt to climate impacts.29 On the plains of Colorado and New 
Mexico, most rural counties are depopulating due to persistent out-migration of young adults, straining 
social services and reducing tax revenues.190 Yet the Southwest also has some of the fastest-growing areas in 
the US, including high-amenity rural areas and cities expanding into agricultural zones.191 Urban expansion 
can increase cropland loss while simultaneously increasing the number of small farms focusing on specialty 
crops rather than basic commodities,192,193 placing greater pressure on the region’s food supply as drought 
(KM 28.1)51 threatens agricultural production.194

Livestock production is the dominant use of agricultural land in large areas of the Southwest where crop 
production is unprofitable or infeasible. Animal agriculture accounts for about one-third of agricultural 
revenue, with about 70% from cattle.195 Climate change is expected to reduce the sustainability of cattle 
production that depends on rangeland ecosystems.195,196 Negative impacts are expected on the entire 
livestock food supply chain, affecting production and nutritional quality of forage, livestock health on 
rangelands and in transport due to heat stress and pest exposure, and shelf life of products during transport 
and storage.197,198 Forage from Bureau of Land Management rangelands is expected to decrease in Arizona 
and New Mexico, but it is less certain whether rangeland forage will hold steady in the central and northern 
portions of California, Colorado, Nevada, and Utah due to differences in moisture availability during the 
growing season.197,199

Cascading Impacts of Climate Change to Agriculture
The cascading impacts of climate change in combination with urban population increases and other social 
and cultural factors pose an increasing threat to agriculture in the region.29 Urban growth in the Southwest 
has led to competition for water between farms and cities, mirroring global trends.200 Water transfers from 
rural to urban areas have been a feature of the Southwest for decades, often with negative consequenc-
es for rural and low-income communities.201,202 To meet water demands for a growing metropolitan region 
while preserving irrigated croplands, Colorado is experimenting with water policy innovations designed to 
encourage rural-to-urban transfers while minimizing impacts in rural areas, but adoption has been slow 
due to distrust on the part of agricultural communities and uncertainty about trade-offs.202 Market forces 
in California have encouraged growers to shift to crops with a high economic value but also a large water 
footprint, such as tree nuts203,204 and legal cannabis.205

Frontline Communities and Food Insecurity
Frontline communities including Hispanic populations, women farmers, migrant farmworkers, and 
Indigenous Peoples face challenges to water access in their homes as well as food security and health (KM 
4.2).201,206,207 For example, the 2012–2016 drought in California’s San Joaquin Valley disrupted farmworkers’ 
employment and reduced food security, water security, and health.208 Mental health risks are also increasing 
as farmers and ranchers report moderate to severe levels of anxiety about climate change and the need 
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to adapt.209 First-generation and women ranchers are disproportionately vulnerable to climate impacts 
because of limited experience with drought and weaker connections to rancher networks.210

Low-income urban communities are expected to be among the first to suffer food insecurity as climate 
change reduces the region’s food production. Strategies have been proposed to produce more food in urban 
settings, but these foods often do not reach low-income consumers, who have less access to food distri-
bution systems and often cannot afford to pay the higher prices such foods often command.211 Indigenous 
Knowledge has been proposed as a significant resource for climate change adaptation (KM 16.3).212,213 Because 
people in the Southwest have adapted to drought impacts for millennia, employing Indigenous Knowledge 
can allow the region to serve as a “laboratory” for future climate-adapted food systems214 while enhancing 
food sovereignty.215

Adaptation for Agriculture
Adaptation solutions exist for ranching operations,196,216 but social and economic barriers, such as distrust 
of experts, the financial costs and time commitments of innovation, and adherence to tradition, have 
slowed information uptake.199 Climate change information is not routinely incorporated into ranchers’ 
risk management decisions217 and only recently has become a priority in federal agency rangeland 
management plans.197

People across the Southwest are exploring technological adaptations to climate impacts (KM 31.3). Adaptive 
conservation management approaches that focus on minimizing soil disturbance while maximizing soil 
cover, biodiversity, and the presence of living roots have been gaining traction with farmers through 
practices such as cover cropping and reduced-tillage and no-till farming (KM 11.1).218,219 Combined with 
reduced tillage, cover cropping improves soil structure, organic carbon content, and infiltration and 
water-holding capacity in irrigated cropland220 and positively impacts nutrient cycling, crop yield, and 
soil water conservation in limited-irrigation, semiarid cropping systems.221,222 However, some farmers 
and ranchers, such as those who operate on small acreages, often find it hard to access the resources to 
transition practices or may perceive the risks of change to be too great, including financial expense and the 
perceived need to learn new skills.223

Irrigation efficiency can reduce risks to farming and ranching operations due to increasing tempera-
tures, unreliable precipitation, and reduced water resources. However, access to these solutions can 
be complicated due to farm or ranch location, access to surface water and groundwater, water rights, 
current irrigation methods, and crop types.224 In the Verde Valley of Arizona, limited access to materials, 
equipment, and financial resources, especially for small-scale producers, inhibits their ability to 
respond to water-related challenges.224 Indigenous Peoples face barriers in accessing support from the 
Natural Resources Conservation Service (NRCS) related to land tenure, financial assistance, institution-
al mismatches, and complexities in incorporating Indigenous agricultural methods in applications for 
NRCS programs.225,226
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Key Message 28.4  
Climate Change Compromises Human Health and Reshapes Demographics

Increases in extreme heat, drought, flooding, and wildfire activity are negatively impacting 
the physical health of Southwest residents (high confidence). Climate change is also shaping 
the demographics of the region by spurring the migration of people from Central America to 
the Southwest (medium confidence). Individuals particularly vulnerable to increasing climate 
change impacts include older adults, outdoor workers, and people with low income (high confi-
dence). Local, state, and federal adaptation initiatives are working to respond to these impacts 
(high confidence).

Extreme Heat Impacts
Since 2018, 31 large climate- and weather-related disasters have affected the Southwest, resulting in more 
than 700 fatalities and estimated damages totaling $67.3 billion (in 2022 dollars).2 Strong evidence indicates 
that extreme heat disproportionately impacts the health of frontline and overburdened communities in the 
region (KM 15.2), including the unhoused,227,228,229 outdoor workers, and migrant farmworkers (Figure 28.7; 
KM 11.2),230,231,232,233 as well as those with low income8,234 and older adults.235 Between 2016 and 2020, 7,687 
hospitalizations in the Southwest were due to heat and heat-related illnesses, in comparison to 5,517 in the 
previous five years (2011 to 2015).236 Pre- and post-natal exposure to high heat and air pollution are shown to 
be particularly dangerous in the region.237,238,239,240

Extreme heat and high-ozone days in the region are expected to increase under climate change (KMs 2.3, 
3.5).241 These changes are expected to increase heat and air-pollution exposure, illness, and premature 
death.242 Intensified aridity from higher temperatures and drought is expected to lead to more dust storms243 
and more than double the number of deaths attributed to fine dust by 2080–2099 under a very high 
scenario (RCP8.5), relative to 1986–2005 (KM 6.1),244 with increasing exposures for outdoor workers during 
the warm season. The incidence of coccidioidomycosis (Valley fever) in the region has increased (Figure 
15.2)245 and is associated with higher air temperatures and drier soils,246,247 with greater risk to those whose 
job requires dirt disruption. The annual average cost to the US economy of Valley fever for the 2000–2015 
baseline was $4.8 billion per year (in 2022 dollars), which is projected to increase 390% by 2090 under a very 
high scenario (RCP8.5; Figure 15.2).248

Extreme heat exposure also affects the economy through decreased productivity and well-being in outdoor 
workers (Figure 28.7),249,250,251 especially among migrant agriculture workers in the region (KM 15.1).252,253 
Impact estimates to productivity provided in Figure 28.7 are projected to result in a loss of 25% of the 
workday on all days in the third quarter (July–September) under a very high scenario (SSP5-8.5) by the end 
of century and cause important losses to the economy (KM 19.1). Dehydration due to working outdoors in 
extreme heat in California is linked to acute kidney illness even after a single day of exposure.254 Research 
into the mechanisms of chronic kidney disease related to climate change is ongoing, yet occupational heat 
exposure is a causal factor.255
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Heat Impacts in the Southwest

With extreme heat events expected to increase in frequency and severity, the ability to perform work outside is 
projected to decline across parts of the Southwest.

Figure 28.7. The ability to perform work outside—as measured by physical work capacity (PWC)—will decline 
across large swaths of the Southwest due to heat exposure throughout the century, with the greatest declines ex-
pected in southwest Arizona, southeast California, and California’s Central Valley. These impacts on outdoor work 
will affect agricultural output, as well as earning ability for workers. PWC has a range of 100% (no loss of work 
capacity) to 0% (complete loss). The maps display the proportion of days in the third quarter (July to September) 
in which PWC is less than 75%. In historical conditions (a), a few locations in southern Arizona had PWC values 
less than 75% for half of the quarter. (d) Under a very high scenario (SSP5-8.5) by end of century, most of southern 
Arizona, southeast California, and some of California’s Central Valley are projected to have less than 75% work ca-
pacity for all days in the third quarter. This daily labor loss is calculated based on a given heat load (temperature, 
humidity, and solar radiation) compared to temperate conditions where there is no thermal effect on work output. 
To provide a full range of potential impacts, maps are based on representative years for (a) historical/early centu-
ry (1991–2010); (b) midcentury (2041–2060, SSP1-2.6 [low scenario]); (c) midcentury (2041–2060, SSP5-8.5 [very 
high scenario]); and (d) end of century (2081–2100, SSP5-8.5). Estimates are based on an individual performing 
moderate to heavy agricultural work outdoors over a daytime shift (about 7 hours). The PWC is an empirical 
estimate based on human physiological chamber studies quantifying how PWC changes with the environment 
heat load based on the wet-bulb globe temperature.256,257,258,259 Land areas in white had no crops in the early 21st 
century. Figure credit: University of Illinois–Urbana Champaign and Arizona State University.
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Air Quality and Health Impacts
While the annual average level of fine particulate matter (PM2.5) has seen decadal decline in the region due to 
strengthened air quality policies reducing emissions from controllable sources, disparities in PM2.5 exposure 
and related health concerns remain high in the region.260 Moreover, the frequency and severity of smoke 
events with PM2.5 exceedances of federal air quality standards have increased significantly due to wildfires 
(Figure 14.3). Since 2015 in Northern California, the annual average PM2.5 has increased because of wildfire 
events, which have taken over as the main source of PM2.5 exceedances.261 PM2.5 in wildfire smoke contributes 
to adverse health effects for firefighters262 and the public263,264 and can be more hazardous to health than 
similar levels of particulates from other sources.265 The costs of adverse respiratory and cardiovascular 
health outcomes can exceed the billions spent on wildfire suppression (KM 28.5).266 Chemicals in wildfire 
smoke also correlate with increased cancer risk.267 Direct exposure to the 2018 Camp Fire in California has 
been linked to mental health disorders such as depression and post-traumatic stress disorder.268 Wildfires 
can also cause other public health impacts, including water contamination when fires damage water dis-
tribution infrastructure,269 long-term loss of access to clean drinking water,270 and increased landslide risks 
(KM 28.5).

Flooding and Disease
Increases in flooding in the region are projected with continued warming.271,272 These changes increase risks 
of water-borne diseases and exposure to toxic hazards and place stress on food, energy, and water supplies, 
as well as farmworkers’ health (including interconnected sectors) and their socioeconomic insecurity.39 
Flooding exposures may increase as a greater proportion of the population across the region, on average, 
is living on 100-year floodplains (e.g., in California, between 1990 and 2020, 25,000 more people lived on 
100-year floodplains).137 Flooding can also interrupt vector-control programs, such as for West Nile virus.273 
The region is seeing challenges with West Nile virus, particularly in Arizona and California,274 with projected 
increases due to changes in the climate, human population, and mosquito distribution (KM 24.3).275,276

Impacts to Outdoor Workers
Limited occupational health and safety standards for farmworkers and other outdoor workers are of 
key concern, as intensifying wildfires and heat collide with harvest season each year, particularly for 
undocumented Latino/a and Indigenous migrants.231 The improvement of these standards at the state 
and national levels will be critical for health adaptation to climate impacts in the region. Moreover, the 
harm to farmworkers due to wildfire smoke is expected to be greater than previously thought, bolstering 
the argument for additional research and policies to help safeguard overburdened and stigmatized 
populations.277 Many Southwest cities experienced high rates of economic and population growth during 
the second half of the 20th century, particularly between 2015 and 2019.31 The region’s flourishing economy 
and proximity to the Mexican border result in a high influx of migrants.278,279 Migrants from Central America, 
spurred to migrate due to climate change in addition to poverty and violence (KM 17.2), are drawn by the 
Southwest’s strong economy and increase the number of vulnerable people and change the demographics 
in the region. Local, state, and federal efforts to both mitigate climate change and support essential human 
adaptation to increasing exposures will be vital in protecting the health of a growing and aging population 
and our most vulnerable communities (Figure 28.8; KM 15.1).280
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Community Resilience Estimates for the Southwest

Communities with higher socioeconomic risk factors are expected to be less resilient in the event of climate and 
weather disasters.

Figure 28.8. The map shows community resilience estimates (CREs) for the Southwest. Community resilience is 
the capacity of individuals and households to absorb, endure, and recover from the health, social, and economic 
impacts of a disaster. Individual and household characteristics from the 2019 American Community Survey were 
modeled, in combination with data from the Population Estimates Program, to create the CREs at the county level. 
Darker shading indicates a higher proportion of the population at risk. Adapted from US Census Bureau 2021.281

Demographic Shifts Related to Climate
The effects of climate change on other regions of the world—especially Central America—are changing 
the Southwest’s demographics. Decreasing agricultural productivity, increasing levels of food insecurity, 
and adverse climate effects are among the main reasons why people emigrate from the Northern Triangle 
(Guatemala, Honduras, and El Salvador) to the US (KM 17.2).32,279 In 2021, 42% of Central American immigrants 
to the US lived in the Southwest region,282 and about 43% of immigrants apprehended at the Southwest 
border in 2019 originated from the Northern Triangle.278 Many are poor, women, children, or Indigenous 
Peoples. Climate-related migration has been shown to affect people’s physical and mental health, resulting 
from exposure to weather extremes, disruption of social ties, and overcrowding of health systems in the 
host communities.283
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Adaptation Efforts for Health
Several programs have been developed to address the health impacts of climate change in the region, but 
financial constraints and political support affect their implementation.284 Since 2010, the CDC’s Building 
Resilience Against Climate Effects program in Arizona and California has developed and implemented 
strategies to protect communities from climate-sensitive hazards, including schools, healthcare facilities, 
and other at-risk populations.285 This program, currently in 10 cities across the country, has developed 
important resources and programs that can be scaled up for future climate resilience efforts. To protect the 
health and learning of school children, the Arizona Department of Health Services created new heat policy 
guidance, resulting in recommendations for school heat safety and adaptation strategies.286,287 In California, 
San Mateo County assessed asthma burden connected to local climate issues.288 Public health guidance 
in the region should focus on co-exposures to heat and wildfire smoke in adaptation efforts,289 particu-
larly given the projected increase in childhood asthma due to wildfires.290 While data on private sector 
investment is limited, the private sector has historically lacked incentives to invest in adaptation (KM 31.6). 
Globally, in 2017–2018 only 1.6% of all adaptation financing came from the private sector.291 In the Southwest, 
however, certain sectors, such as insurance, came under pressure from the local authorities to get involved 
in tackling climate change by divesting their fossil fuel–based investments.292

Key Message 28.5  
Changes in Wildfire Patterns Pose Challenges 
for Southwest Residents and Ecosystems

In recent years, the Southwest has experienced unprecedented wildfire events, driven in part 
by climate change (high confidence). Fires in the region have become larger and more severe 
(high confidence). High-severity wildfires are expected to continue in coming years, placing 
the people, economies, ecosystems, and water resources of the region at considerable risk 
(very likely, high confidence). Opportunities for adaptation include pre- and postfire actions 
that reduce wildfire risk and facilitate ecosystem restoration and include traditional land stew-
ardship practices (high confidence) and the application of Indigenous cultural fire (medium 
confidence).

Fire is a natural process in many ecosystems across the Southwest and is necessary for biodiversity, 
ecosystem services, and nature-based solutions (KM 8.2). Fire regimes associated with fire-dependent 
ecosystems are highly variable with elevation and across geographies.293 Long-standing policies and forest 
management—including fire suppression, widespread logging and livestock grazing, and elimination 
of Indigenous fire use—combined with the effects of a changing climate, have contributed to high tree 
densities, compromised ecosystem function, and the diversity, or heterogeneity, of forest attributes such 
as species, size classes, and geographic distributions.18,21,294,295,296 Consequently, many Southwest forests and 
fire-prone wildlands are susceptible to climate-mediated impacts including droughts, pests and disease 
(Box 7.1), and devastating wildfire.295,297 An abundance of scientific research strongly suggests that Southwest 
ecosystems, in the face of rapid climate change–induced transformation, will require active management 
interventions that increase forest heterogeneity and enhance ecosystem function and adaptive capacity 
(KM 7.3).298,299,300

Human-induced warming temperature trends, changes in precipitation patterns, and increases in vapor 
pressure deficit have driven the desiccation of fuels that influence wildfire patterns and behavior across 
the western US (KM 7.1).17,18,19,20,21,301 In the Southwest, fires have become larger, more frequent, and, in many 
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areas, more severe (KM 7.1), with clear evidence of climate change as a major cause.302,303 Seven of the ten 
largest US wildfires in 2020–2021 occurred in the region. Of the 50 largest US wildfires in 2020, 22 occurred 
in California, and the 7 largest wildfires recorded in California have occurred since 2018.304,305,306 The three 
largest wildfires recorded in Colorado occurred in 2020; the largest fires in Nevada history burned in 2018;307 
and the largest wildfires in Arizona, New Mexico, and Utah all occurred since 2007 (Figure 28.9; Focus on 
Western Wildfires). Large fires on non-forested western US rangelands also increased more than fivefold 
during the period 1984–2017.308 Much of this increase is driven by increases in invasive annual grass cover, 
caused partly by climate change and increased atmospheric carbon dioxide.309

Impacts on Ecosystems
Climate change causes cascading effects with other factors in Southwest ecosystems that are otherwise 
fire-adapted. For example, large areas of high-severity fire have driven ecosystem type conversions in many 
parts of the region.294,310 Semiarid to arid forest systems are particularly vulnerable to these effects and have 
experienced conversion to native grassland,311 shrubland, or non-native grassland (Figures 28.9, 8.6).294 The 
cumulative effects of fire-driven ecosystem changes continue to place ecosystems at high risk of vegetation 
type conversion (e.g., forests to shrublands), which can result in severe impacts on watersheds and aquatic 
resources.294 Effects include degradation of riparian systems; risks to riparian and riverine species, as well as 
to threatened and endangered species, from erosion caused by extreme precipitation events; and increased 
invasions by non-native species.312

Wildfire and Vegetation Change in the Southwest

Climate change is leading to larger and hotter fires and resulting in shifts in vegetation.

Figure 28.9. Data from the states of California, Arizona, Colorado, and New Mexico show that approximately 
half (about 50%) of vegetation type change (e.g., forests transiting to shrublands or grasslands) is a function of 
high-severity fire. Adapted from Guiterman et al. 2022294 [CC BY 4.0].

https://creativecommons.org/licenses/by/4.0/legalcode
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Recent climate-induced aridification, including loss of snowpack, has also hindered postfire tree seedling 
and shrub establishment, limiting ecosystem recovery.313,314,315 This is particularly true of postfire conditions 
for water availability, quantity, and quality. Moreover, interactions between wildfire and natural drought 
variability are expected to increasingly exacerbate dry conditions that will further stress tree seedlings316 
and drive potential future shifts in species composition or vegetation type.314,317 Conversions of coastal 
shrublands driven by human development also have interacted with climate-induced drying of vegetative 
fuels to generate atypical fire conditions.318

Projections of future climate change suggest that wildfire activity will continue to affect ecosystems and 
their services.298,319,320,321,322 Specific ecosystem responses to climatic changes will depend on interactions 
among vegetation type, moisture stress, disturbance regimes (e.g., pests, pathogens, and high-severity fire), 
and human land-use changes (KM 6.2).295,297,319 For example, climate change is predicted to lead to a loss of 
sagebrush ecosystems in the southern and eastern Great Basin because those ecosystems are less able to 
recover after fires in a warmer, drier climate.323

However, future wildfire trends are less certain in rangelands than in forests because fire size (measured by 
annual area burned) and severity (a shift from low-intensity fires to stand-replacing crown fires) depend on 
production of aboveground vegetation that varies annually with climatic conditions.324 Growth of the grasses 
that typically fuel wildfires is expected to decrease in Arizona and New Mexico,199,325 whereas elsewhere 
in the region, precipitation is projected to increase early in the growing season, which, when followed by 
hotter summers, will generate conditions ideal for fire ignitions.324

Impacts on People and Communities
Climate-related increases in the frequency, severity, and extent of wildfires in the Southwest are 
endangering lives and property (Focus on Western Wildfires).17,18,19,20,21,326 Complete data across the region 
on wildfire-caused fatalities are sparse,327 but three of the five deadliest fires on record in California have 
occurred since 2017, costing 122 lives.304 Further, loss of life can be attributed to wildfire smoke, which has 
also been linked to increases in COVID-19 fatalities in Northern California328 and postfire debris flows that 
can leave slopes bare of vegetation and vulnerable to rapid erosion (Ch. 7; Focus on Western Wildfires).329 
The risk of postfire debris flows in coastal communities is expected to increase due to an increase in heavy 
precipitation typically delivered by atmospheric river events (KMs 28.1, 8.1).330

Property losses due to wildfire are greatest in the Southwest compared to other regions. In 2021, 3,363 
structures burned due to wildfires in California, the highest number lost in any state, while the December 
2021 Marshall Fire in Colorado, a fast-burning grassland fire, burned more than 1,000 homes in just a few 
hours.306 The 2022 Calf Canyon/Hermit’s Peak Fire that burned 341,735 acres is New Mexico’s largest fire. 
Secondary impacts of wildfire, such as postfire debris flows (Figures 3.13, 6.5) on recently burned slopes, 
impose additional hazards to property.329 The estimated cost of fighting the 10 largest California wildfires 
in 2021 exceeded $2.25 billion (in 2022 dollars),306 with suppression costs representing only a fraction of a 
total economic impact that also includes loss of structures and infrastructure, increased medical costs, crop 
losses, water quality contamination, and other factors (KM 19.1).

The increase in structures and infrastructure lost can be linked to population growth in the wildland–urban 
interface (WUI; Figure A4.14), where houses are built close to forests and other natural areas.331 The number 
of Americans living in the WUI doubled from 1990 to 2010, and the WUI population has risen fastest in areas 
such as the Southwest where wildfire risk is greatest.332,333 While migration to WUI counties shows modest 
reductions immediately after wildfire or extreme heat events,334 fires do not seem to drive current residents 
away; fewer than 6% of Sonoma County, California, residents who lost homes to wildfires in 2017 subse-
quently left the county.335
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Impacts of fire on community livelihoods depend on exposure to wildfire risk and capacity to adapt (KM 
7.3). Analysis of livelihood vulnerability in 14 fire-prone states found that New Mexico and Arizona residents 
were most vulnerable due to relatively high risk exposure and low to moderate access to resources needed 
to adapt to changing conditions.336 Low-income areas, communities of color, undocumented Indigenous 
migrants, sexual and gender minorities (KM 15.2),337 and unsheltered persons are most vulnerable to wildfire 
impacts,231,338 including water contamination from carcinogenic compounds.269 Populations with medical 
disabilities or limited mobility, older adults, and those who rely on medical equipment are also dispropor-
tionately at high risk during wildfires.339

Wildfires, moreover, often occur during farm harvest seasons, increasing health risks for workers.277 
Southwest industries especially vulnerable to wildfires include wineries,340 tourism,341,342 forest products,183 
and legal cannabis cultivation.343 For example, in the 2020 fires, the economic impact of smoke taint is 
estimated to have cost the California wine industry $4.2 billion (in 2022 dollars). Smoke taint occurs when 
smoke and ash permeate the skin of grapes and can affect the taste and smell of wine.344

Impacts of wildfire on natural environments can affect ecosystem services (KM 7.2) that people derive from 
those environments, including air quality (KM 28.4),266 water quality and availability,345 pollination,346 livestock 
forage and health,347 and outdoor recreation.348 Ecosystem service effects vary over time as short-term 
declines in services can be followed by improvement over a longer term as ecosystems recover.349 Wildfires 
in forested ecosystems chemically alter watersheds and can reduce drinking water quality,350 in some cases 
leading municipalities to issue drinking water advisories.351 Postfire hazards such as floods and debris flows 
further threaten water security (Focus on Western Wildfires).352 Smoke from the 2020 wildfires significantly 
reduced industrial solar energy production in Southern California.353

While high-severity wildfires (i.e., stand-replacing fire) generally have negative impacts, wildfires and 
prescribed fires that burn at low to moderate severities can have positive effects by reducing fuel loads, 
curtailing plant pests and diseases, and stimulating new vegetation growth.354 Prescribed burning, while an 
effective tool to reverse undesirable changes in forest vegetation structure due to fire suppression, can also 
reduce air quality in the short term.266

Ecosystem Management Challenges and Adaptation Solutions
Forest resilience may be enhanced by thinning trees, leveraging low- and moderate-severity wildfires with 
traditional forest management treatments that adjust fuels, and better incorporating managed wildfire.299 
Using prescribed fire in conjunction with mechanical forest treatments, such as thinning or pruning, also 
reduces tree densities and fuels.300 Prescribed fire can increase forest resilience during periods of cli-
mate-related stress, such as sustained drought,355 and can reduce the extent and intensity of the wildfire 
regime.356 Cultural fire use to meet Indigenous and Tribal objectives can be compatible with traditional fire 
application and help advance increased resilience to climate change.296,357

To decrease competition for water resources and increase forest resilience, reductions in tree density and 
fuels can lower the risk of high-severity wildfires and drought- and pest-induced mortality (KM 6.2).358,359 
Recent evidence suggests that increasing these approaches can help adapt to the rapidly increasing 
risks.299,360 However, the implementation of prescribed fire may be curtailed due to public concerns about 
smoke and fires that escape management prescription.361

Natural lands, including forests and associated woodlands, play a central role in mitigating climate change 
(KM 32.1).362,363 However, climate variability, drought- and pest-driven tree mortality, wildfire, and other 
disturbances suggest that the Southwest will see a continued decline in terrestrial carbon storage.362,364 As 
a result, securing or even increasing ecosystem carbon storage is often an objective for forest management 
investment.365 Forest management treatments differ in their short-term carbon losses relative to the 
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expected benefits of greater fire resistance, which leads to longer-term carbon stability (Box 7.2). In 
Southwest forests, reducing thinning area and increasing the area burned enhances the potential for a 
net carbon benefit when compared to no action.366 Reforesting areas where forest cover was lost due to 
mortality can help mitigate the effects of climate change,367 but planting additional trees that increase forest 
density would result in elevated fire risk and drought stress and therefore is not expected be an effective 
adaptation solution.300,368

Other adaptation solutions include power shutoff policies by utilities to reduce wildfire risk when 
extreme wind events are predicted to topple powerlines and telecommunications infrastructure.369,370,371 
Power shutoffs are more likely in autumn due to a climate-related increase in the number of days with 
extreme fire weather.18 Power shutoffs may also increase homeowners’ intention to adopt solar power372 
or fossil fuel–powered generators.373 Individuals who experienced shutoffs reported poorer physical and 
mental health immediately after the occurrence, yet they still supported the use of shutoffs as a wildfire 
risk-reduction strategy.374
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Traceable Accounts
Process Description
Following their selection in August 2021, the chapter lead author, federal coordinating lead author, and 
agency chapter lead author developed a comprehensive list of author candidates based on an analysis of 
prior National Climate Assessments, published scientific literature, science communication outlets, and 
policy-relevant reports. The final chapter authors were then selected based on their depth of knowledge, 
diversity of expertise, and experience in issues critical to the Southwest. Furthermore, authors were 
selected to represent diverse perspectives in terms of race, ethnicity, and gender identity. The Southwest 
chapter public engagement workshop was held virtually on February 4, 2022, with more than 90 partic-
ipants. The workshop included an overview, a series of breakout rooms where the participants provided 
feedback on key topics, and a final roundup discussion among all participants. The author team held a 
debriefing session on February 7, 2022, to reflect on the input provided during the workshop. The author 
team met weekly during the development of the chapter.

Based on discussions among the author team, input from stakeholders, and consideration of the Fourth 
National Climate Assessment, the authors developed five Key Messages representing the valued assets and 
unique characteristics of the region. These include water resources, the coast, food and agriculture, demo-
graphics and human health, and wildfire. The chapter details the observed and anticipated effects of climate 
change on human and natural systems across those topics and outcomes to be avoided in the absence of 
adaptation and mitigation. 

For the scientific assessment, the authors conducted a systematic evaluation of the body of scientific and 
technical knowledge to synthesize published studies, data, models, and assumptions while applying best 
professional judgment to assess uncertainties and conflicting findings. The chapter pays specific attention 
to factors that make specific systems and groups more vulnerable. The chapter identifies intersections 
between topics, cascading risks, and paths to resilience. The chapter also addresses cross-cutting themes 
including adaptation solutions and challenges, climate change equity and environmental justice, Indigenous 
Peoples and Knowledges, economics, infrastructure, and ecosystems and ecosystem services.

Key Message 28.1  
Drought and Increasing Aridity Threaten Water Resources

Description of Evidence Base
Instrumental data and paleoclimate data provide strong, abundant evidence that the early-21st-century 
drought in the Southwest is more severe than most, but not all, prior drought periods.28,45,46,375 Research 
has identified higher temperatures as being a major driver of drought severity through the mechanism of 
increased atmospheric demand.47 Recent research builds on an already-substantial evidence base demon-
strating the decline of southwestern snowpacks over the last century.5,6,49,50 Research has shown how 
drought-induced shortages in surface water have increased groundwater pumping in California’s Central 
Valley,67 which provides one example of how drought may reduce future water access, especially if aquifer 
recharge is also reduced.63

Major Uncertainties and Research Gaps
Historical data supply insight into the potential impact of precipitation deficits on surface water, and various 
research studies demonstrate how precipitation deficit and higher rates of evapotranspiration feed into 
reduced soil moisture and infiltration, both in contemporary and future warmer climates. However, there 
is remaining uncertainty over the precise contribution of temperature to these declines in 20th-century 
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Upper Colorado streamflow,375 the impact of changing snowpack dynamics on streamflow in and across 
different southwestern river basins,56 and the impacts of El Niño–Southern Oscillation on precipitation in 
the region.376,377

There are also research gaps on the impacts of climate change on the full hydrologic cycle of the Southwest. 
From the biophysical perspective, there’s a lack of information about aquifer recharge, specifically regarding 
temporal variability of recharge rates and locations.63 Another topic for further exploration is the rela-
tionship between drought, surface water supplies, and rates of groundwater pumping for agriculture in 
locations within the Southwest beyond California (e.g., Rio Grande and tributaries, Utah, Nevada). Further, 
there is limited research on climate change impacts on the dynamics of the North American Monsoon, 
including how to more effectively capture monsoon moisture to substitute for decreased winter precipita-
tion, as well as on other extreme precipitation events such as atmospheric rivers.

Additionally, there are multiple paths for water adaptation in the Southwest for industry, agriculture, and 
communities to build resilience to a more water-scarce future. However, there are research gaps around the 
feasibility and long-term effects of these adaptation solutions.378,379 Moreover, the ability of different sectors 
and communities—including rural, low-income, Indigenous, and other frontline communities—to adapt to 
climate-induced water scarcity is highly variable across the Southwest.380 There is a gap in research on best 
practices to support these communities in adapting to current and future water scarcity.

Currently, Indigenous Peoples’ water rights are under-utilized, while water access remains a challenge 
for many Indigenous Peoples. As more Indigenous Peoples gain access to and use their water rights, there 
is limited research on how this might impact other water users and broader water management actions, 
especially under Colorado River drought policies.381

Description of Confidence and Likelihood
Measurements of snowpack, streamflow, and groundwater over the last century support the observation, 
with very high confidence, that climate change has reduced surface water and groundwater availability for 
people and nature in the Southwest.4,14,56 Moreover, evidence from the peer-reviewed literature supports the 
assertion of high confidence that certain Indigenous and frontline communities, including agriculturalists, 
will experience disproportionate impacts from reduced water availability and that long-standing institution-
al frameworks drive these inequities.187,382,383,384

The high confidence that higher temperatures have intensified drought and will very likely lead to a more 
arid future is based on recent evidence that shows that since the early 20th century higher temperatures 
have increased the proportion of precipitation being lost to evapotranspiration relative to its contribution to 
Colorado River flow—a trend that is expected to continue as the region warms.28,51

Without extensive adaptation, which is challenging because human systems have developed under the 
historical water cycle patterns (KM 4.2), there is high confidence and it is likely that these dynamics will 
further stress existing water supply–demand imbalances. Water supply imbalances primarily refer to the 
over-allocation of surface water supplies in the region’s major rivers, such as the Colorado and Rio Grande, 
due to committing more water to what are legally known as “beneficial uses” than is currently available. 
Concurrently, longitudinal studies and climate models suggest that there is high confidence that increased 
flooding will occur due to more intense precipitation events, such as those caused by atmospheric rivers,71,72 
in the region’s future.

There is medium confidence that flexible and adaptive approaches to water management have the potential 
to address changing climate risks and mitigate the impacts on people, the environment, and the economy 
(KM 4.3). While there are abundant examples of such approaches from around the world and in multiple 
water-use sectors, assessments of the feasibility of these examples in the Southwest are lacking.
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Key Message 28.2  
Adaptation Efforts Increase to Address Accelerating 
Impacts to the Region’s Coast and Ocean

Description of Evidence Base
Recent research and observed events demonstrate that marine heatwave events will continue and increase 
in frequency alongside other stressors, impacting marine-resource dependent communities.35,95 Marine 
heatwaves and century-scale sea surface temperature warming trends near the coast of California have 
been attributed to human influence on climate.385 Adverse impacts to aquaculture and wild-capture fisheries 
have already been observed and are projected to worsen. Impacts are connected to the degradation of 
marine ecosystems from not only temperature effects but also ocean acidification, hypoxia, and harmful 
algal blooms. And while there is extensive literature on the California Current ecosystem and wild-capture 
fisheries, there are fewer studies on the long-term effects of extreme events and California aquaculture, and 
thus higher uncertainty.

Sea level rise impacts have been extensively modeled and compared with observed flooding. The most 
recent lines of evidence are synthesized with a large body of relevant literature included in the 2022 
Interagency Task Force report on sea level rise7 and the Intergovernmental Panel on Climate Change Sixth 
Assessment Report from Working Group I.95

The authors focused on findings on the impacts from sea level rise, which centered around new under-
standings of sea level rise impacts to groundwater and infrastructure and communities. Energy and trans-
portation infrastructure will continue to be impacted by increased flooding. Furthermore, recent studies 
have shown that climate impacts will disproportionately impact overburdened communities, but additional 
research specific to California is lacking.

Adaptation for infrastructure and communities has been accelerating in California through state and 
local governments, as seen through the release of laws, executive orders, and state guidance documents, 
as well as an increase in state, Tribal, local, and regional vulnerability assessments and adaptation plans. 
Government planning requirements and guidance for different sectors are increasing. The State of 
California also invests in downscaled climate science to inform state and local climate decision-making; 
the state’s climate change assessment has been codified in law. Less information on adaptive strategies for 
fisheries and aquaculture has been released.

Major Uncertainties and Research Gaps
Long-term, compound implications of greater extremes with other stressors and mitigation strategies 
are less certain. There is less research in California on combined, long-term impacts of marine heatwaves 
and multi-stressor effects on ecosystems, species, and aquaculture. However, multi-stressor research is 
advancing,386 including for the California Current,387 increasing our mechanistic understanding of climate 
change effects. Mitigation strategies of nature-based carbon dioxide removal are growing in interest 
and investment in the US (Ch. 32),388 including in California. While the emerging evidence suggests that 
ocean-based solutions, such as seaweed aquaculture carbon sequestration, are not a global “silver bullet” 
to mitigate carbon emissions, they may provide some local benefits.133 However, who benefits from such 
interventions and the impacts to surrounding ecosystems require further investigation to ensure positive 
outcomes for nature and people.389,390,391

There is a lack of research on the impacts of sea level rise on groundwater flooding, as well as the 
application of those findings to infrastructure and community analyses. These compounding threats 
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have not been included in most adaptation planning to date, which could result in less adaptive solutions 
being implemented.

As governments and communities begin building adaptation projects, uncertainties about their efficacy 
remain. There is limited research tracking adaptation implementation, including research identifying 
potential ramifications, such as displacement of overburdened communities, economic injustices in terms 
of resources available for adaptation, and methods to ensure communities are part of decision-making for 
eventual retreat or relocation. Additional work could help identify how existing funding tools can support 
adaptation and resilience efforts and how to develop a more robust understanding of adaptation costs 
and benefits.

Description of Confidence and Likelihood
There is high confidence that climate change will increase marine heatwaves and harmful algal blooms 
(HABs), resulting in impacts to coastal ecosystems and economies. There is very high confidence and it is 
very likely that marine heatwave frequency, intensity, and extent will increase. Laufkötter et al. (2020)385 
found that heatwaves have already increased twentyfold because of human-caused global warming and 
that the probability of occurrences increases in frequency under progressively warmer scenarios. Linkages 
between HABs and thermal conditions of the oceans have been demonstrated, but frequency and extent are 
linked to climate and non-climate (e.g., runoff) drivers.392 There is high agreement and evidence of negative 
impacts to marine ecosystems and resource-dependent communities in the literature, but under moderate 
to high climate mitigation scenarios, the severity of impacts will depend on adaptative interventions (e.g., 
nature-based solutions, adoption of ecosystem-based management).

Sea level rise will likely cause increased flooding on the Southwest coast, and there is very high confidence 
that those impacts will severely affect infrastructure and communities, with inequities in how these impacts 
are experienced. The latest climate models and sea level rise projections demonstrate increased confidence 
in relative sea level rise amounts by 2050. Sweet et al. (2022)7 state that relative sea level for the entire 
contiguous US coastline is expected to rise, on average, as much over the next 40 years (2020–2050) as 
it has over the last 100 years (1920–2020; 0.82–0.98 feet). Furthermore, by 2050 the expected relative sea 
level will impact tide and storm surge, leading to major and moderate high tide flood events occurring as 
frequently as minor high tide flood events occurred in 2022, which will impact infrastructure, communities, 
and ecosystems.7

Given the State of California’s progress and leadership on climate science and adaptation planning for sea 
level rise, there is high confidence that adaptation planning and implementation will continue. As evidence, 
the state’s fiscal year 2021–2022 budget included $4 billion (in 2022 dollars) for climate resilience programs, 
with other new climate resilience programs created in fiscal year 2022–2023. State agencies continue to 
release adaptation planning guidance (e.g., State Agency Sea Level Rise Action Plan 2022;393 Extreme Heat 
Action Plan 2022;394 State Adaptation Strategy 2021395) and new funding programs (e.g., Adaptation Planning 
Grant Program 2022;396 Transportation Climate Adaptation Planning Grants 2022;397 Local Transportation 
Infrastructure Climate Adaptation Project [LTCAP] Program 2022;398 Regional Resilience Planning and Imple-
mentation Grant Program 2022399). There is limited to no inclusion of aquaculture in California state climate 
planning (e.g., Lester et al. 2022400), and comparatively less coverage overall in the scientific literature 
compared to wild capture and agriculture,401 and thus there is high confidence that climate planning and 
adaptation solutions for aquaculture are less clear.
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Key Message 28.3  
Increasing Challenges Confront Food and Fiber Production in the Southwest

Description of Evidence Base
Temperature and precipitation data clearly show that this century has been warmer and drier than the 
last.50,381,402 This drying and warming trend is already resulting in measurable impacts on rangeland forage 
production,403 dryland agriculture,404 and irrigated crop yields. A substantial literature exists showing the 
impact of climate change on livestock production through changes in food quantity and quality, pests and 
disease, and animal health and well-being.405 Evidence shows that climate is already affecting the dis-
tribution of livestock agriculture in the east of region. The Southern Plains (in New Mexico) and Central 
Plains (in Colorado) saw large decreases in cow numbers in the 2011–2014 drought.406 Increasingly the 
Southwest’s agricultural economy relies on crop production, but research anticipates downward trends in 
the production of numerous high-value crops in California169 and reduced or less reliable supply of irrigation 
water that supports crop production throughout the region. Numerous examples of adaptation strategies 
exist, such as improved irrigation technologies, soil protection strategies, and shifts to Indigenous practices 
and crops, although there are barriers that inhibit widespread adoption of many of these practices.

Major Uncertainties and Research Gaps
Southwestern food and fiber production is diverse, spanning rangeland livestock systems, irrigated 
croplands and orchards, dryland, and Indigenous farming. Each of these systems is nested within local, 
regional, and international contexts that can exacerbate or alleviate vulnerability to climate change. This 
diversity, combined with factors other than climate change (e.g., global pandemics, inflation, supply chains, 
access to financial support) contribute to the complexity of assessing the impacts of climate change on 
southwestern agriculture. There are therefore research gaps and some uncertainty on how the adaptation 
options described in the agronomic and range management literature can be applied in the real world.

Research gaps remain in our understanding of not only the biophysical and socioeconomic capacity 
to support change in southwestern agrosystems but also the will of farmers and policymakers to 
change the type of crops that are grown. For livestock producers who rely on forage from public 
lands, there is uncertainty about how climate change will affect the number of animals the land 
can support and how possible reductions in stocking rate will affect the viability of ranches and 
ranching-dependent communities.

Description of Confidence and Likelihood
There is high confidence that continuing drought and water scarcity will make it more difficult to raise food 
and fiber in the Southwest without major shifts to new strategies and technologies. Climate models agree 
that the Southwest will continue to warm. This impacts the thermal tolerance and chilling requirements for 
economically important crops. There are multiple indicators that the Southwest is undergoing aridification; 
as a consequence, it is expected that there will be less available water for irrigated agriculture in the future.

Given substantive evidence in the literature, there is high confidence, and it is likely, that extreme heat 
events will continue to occur and are expected to worsen in intensity and increase in frequency in the 21st 
century.167 Extreme heat reduces crop quality and yield181,403 and affects livestock productivity (and in some 
cases survival), resulting in economic impacts.197,198,405 USDA Risk Management Agency indemnities data from 
1989 to 2021 show that heat events are already driving crop production losses across the region.

There is a growing literature that advocates for greater inclusion of Indigenous Knowledge for informing 
adaptation solutions in Southwest agriculture. There is medium confidence that Indigenous Knowledge, 
along with technological innovation, has the potential to inform sustainable agricultural practice 
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regionwide, as well as increasing Indigenous food sovereignty, because there are few studies to date 
that demonstrate how Indigenous Knowledge can be drawn on to adapt larger acreages or commercial 
operations to climate change. It is also evident in the literature that technical innovations (e.g., agrivoltaics, 
internet of things) have yet to become more widely adopted or applied to larger acreage operations.

Key Message 28.4  
Climate Change Compromises Human Health and Reshapes Demographics

Description of Evidence Base
Strong evidence and good agreement among multiple sources and lines of evidence show that extreme heat 
exposures already are leading to heat-associated deaths and illnesses across the region.228,233,407 Exposures to 
extreme heat for city dwellers are increasing, partly due to human-caused climate change and partly due to 
urban-induced warming.408,409 Regional-scale warming in the Southwest since 1901 exceeds what would be 
expected from natural variability and is partly attributable to human influence.3 Climate change has doubled 
the likelihood of an event capable of producing catastrophic flooding for California, and future increases to 
this risk are expected due to continued warming.271,272

Multiple lines of evidence indicate current and future increases in human exposures and adverse health 
outcomes to wildfire smoke in the region.277,410,411 Good agreement exists among models that the intensified 
arid conditions in the region will result in more dust storms243 and thus a higher incidence of respiratory 
ailments, including Valley fever.246,248

Evidence supports the need for increased investments in adaptative strategies that support social, physical, 
and health systems that enhance individual and community resilience to changes in climate, particularly 
extreme heat.288,412,413,414,415 Improving public health systems and community infrastructure in the region can 
reduce the health consequences of climate change.

Major Uncertainties and Research Gaps
Uncertainties exist in the attribution of changes in climate variables to specific health outcomes. The 
collection of and alignment of more environmental and health data will assist in understanding the 
long-term nature of how climate change affects specific health outcomes. Detecting direct relationships 
between climate change impacts and public health outcomes is also made more difficult due to confounding 
factors related to socioeconomics, vulnerability, exposure assessments, demographic shifts, migration, and 
community and individual characteristics. Detection and attribution studies are thus vital to the region for 
addressing multiple public health concerns (e.g., Ebi et al. 202030).

Related uncertainties in how regional changes in climate will affect public health exist due to variability 
in projections of extreme precipitation; uncertainties in the occurrence and intensity of climate-sensitive 
exposures that impact human health, including wildfire smoke exposures; and variability in local and 
regional ozone based on meteorological conditions and emissions-reduction targets achieved.

Uncertainties also exist in projecting climate-related changes to the abundance of vector-borne diseases 
and associated disruptions. While US rates of chikungunya and Zika dropped416 with widespread travel 
restrictions due to COVID-19, issues with West Nile virus (WNV) remain due to the endemic nature of the 
virus in the region. The most common WNV vector in the region (Culex quinquefasciatus) is abundant in 
urbans areas such as Los Angeles, Albuquerque, and Phoenix,417 and certain water management structures 
(e.g., catch basins, storm drains, and retention ponds) provide favorable environments for Cx. quinquefas-
ciatus reproduction.418 There is also uncertainty around how heavy precipitation, as compared to drought 
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conditions, impacts the abundance and distribution of vector-borne diseases connected to human activity 
and management of water. Transmission of WNV is also projected to shift northward,419 thus decreasing 
potential risks of transmission in parts of the Southwest.

Finally, considerable uncertainties exist in how individuals and communities will adapt to the effects of 
climate change in the region. Model projections of health impacts rarely account for adaptive capacity 
changes into the future. Improving adaptive capacity involves enhancing infrastructure, technologies, 
behavior, and the overall health of the population to cope with climate effects.

Description of Confidence and Likelihood
There is high confidence that increases in extreme heat, drought, flooding, and wildfire activity are 
negatively impacting the physical health of Southwest residents. Climate models agree that the Southwest is 
experiencing higher temperatures and more intense, longer, and more frequent heat events.3,8,375,420Extreme 
heat exposure causes mortality, morbidity, and lost productivity if dangerous exposures occur (KM 15.2).235,421 
Drier conditions lead to a greater risk of wildfires and particulate matter, which adversely affect human 
respiratory and cardiovascular health when exposed.265,290,422,423,424

Climate change is also shaping the demographics of the region by spurring the migration of people to the 
Southwest, primarily from Central America (medium confidence). In 2021, about 13 million people (repre-
senting 21.3% of total population) living in the Southwest were foreign born; 21.1% of those foreign born 
entered the United States in the last 10 years.425 Decreasing agricultural productivity, increasing levels of 
food insecurity, and adverse climate effects are among the main reasons why people emigrate from the 
Northern Triangle (Guatemala, Honduras, and El Salvador) to the US (KM 17.2).32,279 About 43% of immigrants 
apprehended at the Southwest border in 2019 originated from the Northern Triangle.278

Individuals particularly vulnerable to increasing climate change impacts include older adults, outdoor 
workers, and people with low income (high confidence). Wildfires and the related smoke are affecting 
a higher number of people, with strong evidence pointing to the most vulnerable populations being 
at greatest risk.426 Strong evidence further connects rising particulate matter levels to higher risk in 
already-vulnerable populations, including individuals with low income, Indigenous Peoples, pregnant 
people, children, and outdoor workers.427,428,429,430,431 It has been well documented that extreme heat dis-
proportionately impacts the health of the most vulnerable populations in the region, including the 
unhoused,227,228,229 outdoor workers, and migrant farmworkers,230,231,232,233 as well as people with low income,8,234 
older adults,235 and pregnant people and babies (particularly with air pollution co-exposures).237,238,239,240

There is high confidence that local, state, and federal initiatives can respond to these climatic and 
demographic changes by helping people and communities become healthier and more resilient. There is 
strong evidence that increasing adaptive capacity and resilience across communities, especially the most 
vulnerable, will reduce the human health impacts of climate change.432 The relative importance of various 
adaptive strategies will differ across spatial and temporal scales, climatology, and social and behavioral 
contexts. Improving public health systems, overall health, community infrastructure, and education can 
reduce health risks that are being exacerbated in the Southwest due to climate change, as well as many 
health risks in general.431
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Key Message 28.5  
Changes in Wildfire Patterns Pose Challenges 
for Southwest Residents and Ecosystems

Description of Evidence Base
Changing wildfire dynamics include increases in wildfire size and severity and changing and lengthening 
fire seasons.18,303,433,434 Extensive research has found that climate change is linked to increases in extreme 
fire weather,18 wildfire activity,20,303,326 wildfire severity,17,19,21,434 and acreage burned annually.302 Unprece-
dented high-severity fires have driven ecosystem conversions in many parts of the region.294,311 Recent 
climate-induced aridification, including loss of snowpack, has also reduced postfire tree seedling and shrub 
establishment, limiting ecosystem recovery.313,314,315

Projections suggest that future fire activity will continue to degrade ecosystems and alter their structure 
and function.294,298,319 Increased fire activity,320,321,322 further warming and drying that stress tree seedlings, 
and model projections of stand-replacing fires at the forest/non-forest boundary in the western US316 have 
raised the possibility of shifts in species composition or vegetation type.294,317 These projections suggest high 
variability in ecosystem responses depending on interactions between vegetation type, moisture stress, 
disturbance regimes, and human alterations.314,319,435,436,437,438

Increasing wildfire risk poses threats to lives and livelihoods in the region. Wildfire and accompany-
ing smoke have led to fatalities caused by the fires themselves,304,327 by smoke from wildfires,328 and by 
debris flows that occur when heavy rains fall on recently burned slopes.330 Even if not fatal, wildfires have 
been linked to declines in physical health265,328,439 and mental health.268 Frontline communities, including 
low-income groups and populations of color, are especially vulnerable to these impacts.231,338 Exposure 
of people in the Southwest to wildfire risk is also increasing due to population growth in wildland–urban 
interface areas near fire-prone forests, shrublands, and grasslands.331,332,333 Economic costs to individual 
households come from structures burned and increased insurance and healthcare costs.440,441 Further costs 
come from income lost due to fires that affect energy, agriculture, and tourism.340,341,342,353

Adaptation strategies include reduction in tree density and wildland fuels299,355,358,359 that can reduce the size 
and severity of fires when they occur. Integration of Indigenous burning practices with contemporary forest 
management can mitigate wildfire risk as well.296 Risk is expected to be reduced through public safety power 
shutoffs initiated by electric utilities when weather conditions suggest wildfire danger is especially high.370

Major Uncertainties and Research Gaps
The short-term likelihood of increasing wildfire risks and impacts is very high. What is less clear is the 
extent to which adaptation strategies such as increasing fuel-reduction treatments and adoption of cli-
mate-adapted silviculture will be able to mitigate those impacts. As yet, there has been no reliable way 
to quantify the degree to which increases in fire area and severity are due to climate change versus past 
management, non-native species invasions, urbanization, or other factors. To restore forest resilience (KM 
7.3), the rate of thinning and fuel reduction needs to be greatly increased, and it is not known whether 
resources will be available to achieve such intensified management. Fire ecologists point to the need for 
increasing use of prescribed burning to reduce fuel loads, but it is not certain how much this increase 
can be achieved, considering the increasing risk of fire escape and public unease about the use of fire as 
a management tool.361 Geographic factors, forest policies, and public attitudes toward forest management 
can constrain the rate at which risk-reduction actions can be implemented. Similarly, long-term attitudes 
toward public safety power shutoffs, restrictions on homebuilding in fire-prone landscapes, and other 
risk-reduction policies are uncertain. 
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Description of Confidence and Likelihood
There is high confidence that the Southwest region is experiencing unprecedented wildfire occurrence 
and that this change is linked to climate change. Contributing causes include land management policies 
that have led to high tree densities that increase fuel for fires,295,318 climate-mediated events such as insect 
and tree disease outbreaks (Box 7.1),319 and increased human population at the forest’s edge,331 all of which 
interact with climate change in ways that increase wildfire risk and occurrence.18,21

There is high confidence that fires in the region have become larger and more severe. Increased tempera-
tures and changes to precipitation have combined to produce an increase in vapor pressure deficit.333 
This, in conjunction with episodes of climatic extremes such as droughts and heatwaves, means it is very 
likely that these trends will continue in the region’s forests.319,320,321,322 However, there is less certainty about 
future trends in non-forested areas because of high year-to-year variability in production of the grasses 
that fuel wildfires,324 with model projections suggesting that climate impacts on plant growth will vary across 
the region.325 

There is high confidence that severe wildfires are placing people, economies, ecosystems, and water 
resources at risk, and it is very likely that severe wildfires will continue, partially because of climate change 
impacts. There is consensus among studies from climate models that the Southwest will continue to warm, 
and there are multiple indicators that the region is becoming more arid, increasing wildfire risk. There 
are many indicators of costs to human lives, health, and livelihoods due to wildfire, and as the risk of cata-
strophic wildfire increases, so do those costs. 

There is medium confidence that adaptation pathways will reduce wildfire risk and promote ecosystem 
restoration through forest management and other adaptations such as the application of Indigenous 
Knowledges. While the adaptation opportunities are known, it is less clear whether society will have the 
capacity to embrace those opportunities.
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