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Why Do We Need to Downscale?

Topography Precipitation

Global climate models:

* Coarse resolution of
topography wN

* Inaccurate simulation of
orographic precipitation,
temperature gradients,
cloud, snow, etc.
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Annual Precipitation from WRF Ens002 (4km) : 9-yr climatology starting Oct 1990

Regional climate

models:
* High resolution of
topography

Precipitation (mm)

« More accurate simulation
of local physics and
dynamics




Benefits of Downscaling

* Downscaling provides local-scale insight

* Impacts models need fine-scale and high-temporal
resolution climate inputs (e.g., precipitation,
temperature, winds, radiation, moisture)

 Downscaling can correct for certain biases of
global climate models




Types of Downscaling: Dynamical

« Uses a high-resolution regional climate
model (e.g., WRF) to simulate local
dynamics over the area of interest

« Global model output is applied along the
boundaries and as initial conditions

« Computationally expensive, time and
supercomputers (usually) required




Dynamical Downscaling Output
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Types of Downscaling: Statistical

Uses statistical relationships that relate
coarse to fine resolution from historical ™ shsered duton =

moded distribufon
record

Stationary statistical relationships then
applied to future global model output

Output usually for subset variables
(temperature, precipitation)

Computationally cheap, quick and can 00 / v

be done anywhere e
yw Example: Bias correction with

Statistical relationships do an excellent spatial disaggregation (BCSD)
job reproducing historical data ,
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Tradeoffs Between
Dynamical and Statistical Downscaling

Dynamical

P10°

Represents physical
processes

No stationarity assumptions

Physically consistent across
variables

Computationally expensive
Data set availability is limited

Introduces need for additional
ensembles

Produces climate change
signals that still must analyzed
for credibility

Statistical

P10

Computationally tractable for
large GCM ensembles

Large high-resolution data sets
publicly available

Consistent with observations

May not represent climate
change signal correctly (oftenis
effectively just interpolated GCM
signal)

Statistical nature often introduces
artifacts



A Continuum of Downscaling Options

scaling using state-of-the-art RCMs

ater Research and Forecasting (WRF) model,
« "Hybrid” (dynamical + statistical) downscaling
e.g., build statistical emulator using limited set of dynamical runs

* Physically-based intermediate-complexity atmospheric models
e.g., Linear Orographic Precipitation model

Statistical downscaling based on GCM dynamics (water vapor, wind,
convective potential, etc.)
e.g., regression-based, analog, pattern scaling

« Methods to relate downscaled fields to synoptic scale atmospheric

predictors
\\e.g., self-organized maps, weather typing /

« Statistical downscaling based on rescaling GCM outputs
e.g., BCSD] BCSAJLOCA, BCCA, linear regression, and more

Increasing physical representation




Simulations Iin the Southeast

IIIIIII

L Isabel

Gutmann et al. 2018
National Center for
Atmospheric Research

Hurricanes in 2001-2013

«  WRF model with a 4 km grid

Pseudo-Global Warming Simulation,
can compare modeled and observed
characteristics

« higher precipitation rates (maximum
rates by ~24%), faster maximum
winds, slower storm translation
speeds, and lower central pressures
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Changes in Hurricanes in a Warmer Climate

Hurricane Ivan (historical) Hurricane lvan (future climate)
Current climate Pseudo Global Warming, warmer and moister

2004-09-10 00:00:00

o

.......

Water Vapor (Blues); Precipitation (Green to Red)

Changes in Hurricanes from a 13 Year Convection Permitting Pseudo-Global Warming Simulation,
N‘ AR Gutmann et al., Journal of Climate, 2018, Ethan Gutmann, gutmann@ucar.edu

Analysis funded by Det Norske Veritas (DNV) and CONUS simulation by NSF under NCAR Water System Program
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Climate Attribution Studies
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Questions to Help Determine an
Appropriate Downscaling Technique

 How large is the area of interest?

 Where is it?

« What is the impact of interest?

* When In the future?

« Does the seguencing of events matter?

* What type of climate change uncertainty Is
Important?

 What is available?

e




Classic “Top-down” Impacts Modeling Chain

Emissions
Scenario(s)

e.g. RCP8.5

Global Climate 8
Model(s)

Downscaling Hydrologic
method(s) Model(s)

e.g. BCSD



What type of models do you
use to track water in your
system?

_—



Why Do We Need Hydrology Models?

What we have: precipitation,
temperature, other atmospheric
values

What we would like: streamflow
(highs, lows), water demand from
vegetation, water temperature

|
+ Throughfall

Evaporation

and Snowpack
Transpiration

Burface runoff

b stream or lake
-
Ll

Snowmelt

v

Impervious-Zone Reservoir

Hydrology models represent
"""""""""""""" energy and water fluxes in

watersheds, combine
¢ Ground-water recharge

measurements and physical

l Subsurface recharge

Subsurface
Reservoir

processes to encapsulate our
understanding.

Ground-Water
Reservoir

Important in filling gaps since
measurements are not available
In most places.

Ground-water
sink

16



Daily Flow (cfs)
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App

Modeling Benefits

®

Sub Basins

| Bull Run River
| North Fork
\:I Fir Creek

T~ D Drainage Area
E Bull Run Management Unit

——— Streams

Stream Gages

South Fork

Portland Water Bureau

« Land surface values from GCMs
measures not helpful

« Worked with University of
Washington to select and set up
iIn-house hydrologic model

 Model allows PWB to understand
how changes in streamflow affect
future supply conditions

* Included in Supply System
Master Plan
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Modeling Cautions

* Models built to represent many
landscapes, processes, spatial
configurations+

* May miss key elements
 Groundwater interactions
« Salt water intrusion

Important to be a savvy user

18



Model Spatial Structures

Lumped,
gridded or

i) lump g
hydrologically

iii) polygon similar areas

Figures from Clark et al., WRR, 2015

Model Parameters

Connections between soil and aquifer

Vegetation, Soil
type, ...

19



Hydrologic Model Process Structure
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Hydrologic Model Construction

O Water
O Energy
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Hydrologic Model Construction

O Energy
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Hydrologic Process Selection
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Reveallng Uncertainties
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Classic “Top-down” Impacts Modeling Chain

Emissions
Scenario(s)

e.g. RCP8.5 T
Management/Operations

Global Climate 8
Model(s)

Downscaling Hydrologic
method(s) Model(s)

e.g. BCSD



Revised “Top-down” Impacts Modeling Chain
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Do Be Aware of Multiple Ways to
Evaluate Future Changes

Scenario studies Climate-informed
Stochastic hydrology Vvulnerability analysis

Emissions
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Vano et al., BAMS, 2016; generate timeseries using reconstructions of the distant past



Don’t Treat All Future Projections or

Methods Equally

©

(4) boundary
() conditions

Paleo-
climate data

Climate

S. downscaling

Land
surface

Management
Impact

Different: GCMs, emission scenarios,
spatial resolution, hydrology, +

Figure from Vano et al., BAMS, January 2014

 Certain models and methods are

more appropriate

« Certain spatial and temporal scales

are more appropriate for certain
guestions

« Realize some questions may not

be possible to answer with current
knowledge

Finer resolution in space and time
IS not necessatrily better
* Higher Resolution # Higher Accuracy

Be a savvy consumer and
remember...

29



No Model is Perfect

“The accuracy of streamflow simulations in natural catchments will always be
limited by simplified model representations of the real world as well as the
availability and quality of hydrologic measurements.” (Clark et al., WRR, 2008)

 Don’t expect perfect results,
* Not prediction, but a tool to test how system responds
(what if scenarios)
« BUT we can make better choices...

« Seek simple yet defensible (don’t need a Cadillac)
« Be aware of models shortcomings (know the warts)




What Data are Available Now?

Hydrology focused Green
Data Oasis (GDO) portal

— BCSD (12km), LOCA (6km)
— VIC streamflow

Streamflow Projections for the Western United States RECLAM"%IIQM

» M @ 0 0 w

Dynamical
— NARCCAP (50km),
— CORDEX (limited 25km)

— Others over regional
domains or limited time
periods

USGS GeoDataPortal

— Collection of different
archives

Many others (NASA NEX,
ARRM)

31



What Resources are Available?

WUCA products

— PUMA project examples
— www.wucaonline.org

Federal Agency Guidance
— Bureau of Reclamation
— U.S. Army Corps of Engineers
— Environmental Protection Agency
— U.S. Climate Resilience Toolkit

Professional Societies
— American Society of Civil Engineers

Regional Boundary Organizations

ACTIONABLE SCIENCE IN PRACTICE ‘

texk | RAL

DOS AND DON'TS

a set of guidelines to increase the utility and appropriate use of
i ing an

climate change information in water resource planning and
management

©©

Why?

Water managers are actively incorporating climate change information

change. However, climate information can be confusing to use and
easy to misuse. Advice is not always straightforward and typically
requires extended dialogue between information producers and users,
which is not always feasible.

P 4 ?
= into their planning processes. This supplements traditional planning
WU C A methods and provides new data and tools to help plan for future
Water sty Climace Alliance

— Florida Water & Climate Alliance

Dos and Don’ts Guidelines from NCAR

— Reviews other guidance
— www.ncar.github.io/dos_and_donts

Many others, including each other

Climate I )
Alliance

FLORIDA


http://www.wucaonline.org/
http://www.ncar.github.io/dos_and_donts

Climate Change Study Choices

Emissions
Scenarios Y -

* Approach type (e.g. scenarios, paleo,
vulnerability analysis):

* Emission scenarios used:

* GCMs used:

* Number of initial conditions for each GCM
used:

 Downscaling methods used:

T G * Hydrologic models and parameter sets used:

Method | ° |« Time period of interest (transient or delta):

| = * Project timeline:

Hydrologic ‘g@' * Impacts evaluated:

. e Results reported (ensembles, individual
l simulations):

Hydrologic | Ky S Roin
Parameters| Zo, Z., etc.

Clark et al. 2016 33



Key Takeaways

Downscaling and hydrology modeling provide local-
scale insights into possibilities projected by GCMs.

There is a continuum of downscaling approaches that
span tradeoffs between computational efficiency and
methodological complexity.

Some change signals are more certain than others.

Some uncertainty is unavoidable.

— Representation of uncertainties is hard but necessary.
— Uncertainties have always been there; just understanding them

now.
— Previous studies may be over-confident.




Key Takeaways

Research underway to develop ways to select
representative set of scenarios useful for water
resources planning.

It is critical to understand important processes and
uncertainties in your system.

Models are tools that can be useful, if used
appropriately. Be a savvy consumer.

Consult local experts and national resources,
e.g., Florida Water & Climate Alliance, NCAR
https://ncar.github.io/dos_and_donts
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Do Understand How the Decision Being
Evaluated is Important to Model Selection

What are the questions we are trying to answer?

How will flows in April-September How should facilities be sized to
change in the future? prevent sewer overflows?

How will the magnitude, duration, :

How much warmer will streams
and frequency of drought :

be in 20 years?
change?

water supply, streamflow timing, drought, stormwater, wastewater

FIT FOR PURPOSE
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Do Start by Determining the Level of
Detalls that Fits Your Need and Resources

Additional Considerations:
 How much will it cost?
* How long will it take?
* To what extent will the analysis improve the decision?
« Can appropriate data and information be obtained?
 Who will undertake the analysis?
 How much information can you manage?

38
List from UK Climate Impacts Programme’s report Climate adaptation: Risk, uncertainty and decision-making (+ one from WUCA)



Model Set Up
GIS data = soil, vegetation, elevation maps

Vegetation Type

= fgtim:e“ LEMMA Species—size Dataset?

- Medium Conifers
Small Conifers

- Large Mixed Stands

B Medium Mixed Stands

B small Mixed Stands

- Broadleaf
Open/Sparse

I shrubland

I Meadow

- Rock

B vater

Portland WaterBureau NRCS STATSGO2 and SSURGO23

Elevation Soil Type
-_ Hem - Sandy Loam
-, H sity Loam

- Loam
- Water
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Normalized distance from observations for temperature and precipitation

Figure 3. Normalized distance from observations in the CMIP2, CMIP3, and CMIP5 models. The distance metric is
calculated as the root mean square of the surface temperature and precipitation distance as in Figure 1 but relative to
observations (NCEP, ERA40, and MERRA for temperature; GPCP and CMAP for precipitation, see MK11). Mean and
medians for the different ensembles are indicated by red solid and dashed lines, respectively. Note that most models in
CMIP2 (including HadCM2, but not HadCM3) used flux corrections.

Knutti et al., Geophysical Research Letters 2013

Models are improving
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Common Statistical Downscaling Methods

1. Bias correction with spatial disaggregation (BCSD)
 Used on CMIP3 and

CMIP5 GCMs 1.0

+  Point-by-point T e
guantile mapping on T R S e

=
Y

monthly data
(temp/precip
distributions are bias
corrected and
transformed from
the coarse
resolution data to
finer resolutions)

e Spatial patterns may

=
o
|

Cumma tive distribution function
=
=
|

=
ra
|

not be dynamically 0.0
consistent Temperature
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Common Statistical Downscaling Methods

2. Localized Constructed Analogs (LOCA)

« Used on CMIP5 GCMs (and in the 4™ National Climate Assessment)

« Given coarse resolution data, find analogous days in the historical period
and uses the associated fine-resolution historical data to produce fine-
resolution output

« Statistical corrections to frequency and quantiles

« Improved representation of extremes and spatial patterns

. N

Raw GCM Observed analogs Downscaled GCM

Ny
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Hydrologic Modeling In the Colorado River

Variable Infiltration Capacity (VIC) model

2T T T 8T 1 ¢ § ¢ 21
1.5 1.5
Q5 05+
05 i i : : 05 i i : , (= ; — :
2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12
Historical Temperature Precipitation
perturbations perturbations

—P —ET —aQ
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Hydrologic Modeling In the Colorado River
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Hydrologic Model Choice

w— Observations |
we Catchment
e CLM

Noah27 | Flows at Lees Ferry
= Noah 2.8

— Sac ~using six different
v Hydrologic Models

S
8

1800

1200

800 -

400 +

Monthly Streamflow (m3/s)

o

« Hydrologic models provide a range of results




Hydrologic Model Choice

0.1°C

4|/ M Tmax&min
Ml Tavg
2| I Tminfixed |
-z I I ' Q ref+0.1°c = Qe
4 - Tem pe_rgtgre = Q..
¢ - Sensitivity

sensitivity (% change streamflow per °C)

_1gL 1 ! ! ! ! ! ! I
Catchment CLM MNoah 2.7 Noah 2.8 SAC VIC SACop TWB

« Hydrologic models provide a range of results

« Change signal across hydrologic models also differs

« How sensitive a model is depends on hydrologic model
choice!

« Some signals are less sensitive to model choice than others
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What Do Models Tell Us?

« Many responses to climate change are “obvious”
but some are not

« Hydrology-climate interactions not always linear
 Raln-on-snow events
 Slower snow melt in a warmer world

 Tipping points can be hard to detect

* Models encapsulate our understanding of the
system, but far from perfect




